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Abstract—Offloading traffic through opportunistic communi-
cations has been recently proposed as a way to relieve the current
overload of cellular networks. Opportunistic communication
can occur when mobile device users are (temporarily) in each
other’s proximity, such that the devices can establish a local
peer-to-peer connection (e.g., via Bluetooth). Since opportunistic
communication is based on the spontaneous mobility of the
participants, it is inherently unreliable. This poses a serious
challenge to the design of any cellular offloading solutions, that
must meet the applications’ requirements. In this paper, we
address this challenge from anoptimization analysis perspective,
in contrast to the existing heuristic solutions. We first model the
dissemination of content (injected through the cellular interface)
in an opportunistic network with heterogeneous node mobility.
Then, based on this model, we derive the optimal content
injection strategy, which minimizes the load of the cellular
network while meeting the applications’ constraints. Finally, we
propose an adaptive algorithm based on control theory that
implements this optimal strategy without requiring any data
on the mobility patterns or the mobile nodes’ contact rates.
The proposed approach is extensively evaluated with both a
heterogeneous mobility model as well as real-world contact traces,
showing that it substantially outperforms previous approaches
proposed in the literature.

I. I NTRODUCTION

Following the huge popularization of smartphones and the
ensuing explosion of mobile data traffic [1], cellular networks
are currently overloaded and this is foreseen to worsen in
the near future [2]. A recent promising approach to alleviate
this problem is to offload cellular traffic through opportunistic
communications [3]. The key idea is to inject mobile applica-
tion content to a small subset of the interested users through
the cellular network and let these users opportunistically
spread the content to others interested upon meeting them. By
exploiting opportunistic communicationsin this way, such an
approach has the potential to substantially relieve the load of
the cellular infrastructure. Among other mobile applications,
this can be used for news [4], road traffic updates [5], social
data [6] or streaming content [7]. Indeed, as shown by our
performance evaluation results, the load of the cellular network
can be reduced between50% and 95%, depending on the
application.

Opportunistic networking exploits the daily mobility of
users, which enables intermittentcontactswhenever two mo-
bile devices are in each other’s proximity. These contacts
are used to transport data through the opportunistic network,
which may introduce substantial delays. However, the type
of content concerned by cellular offloading may not always
be entirely delay-tolerant. In many applications, it is indeed
critical that the content reach all users before a given deadline,
lest it lose its relevance or its usability. Therefore, the design

of opportunistic-based cellular offloading techniques faces
serious challenges from the intermittent availability of trans-
mission opportunities and the high dynamics of the mobile
contacts. In order to find the best trade-off between theload
of the cellular network and thedelayuntil the content reaches
the interested users, any opportunistic-based offloading design
must answer crucial questions such as,how manycopies of
the content to inject, towhich usersandwhen.

While a number of techniques have been proposed in
the literature to offload cellular traffic through opportunistic
communications, previous approaches are either based on
heuristics (and hence do not ensure that the load of the cellular
network is minimized) [5]–[7] or fail to provide delay guaran-
tees [4], [7]. In contrast to the above approaches, in this paper,
we propose the HYPE (HYbrid oPportunistic and cEllular)
technique, whichminimizesthe load of the cellular network
while meeting the constraint in terms ofdelay guarantees. To
our best knowledge, we are the first to provide such features.
The key contributions of our work are as follows:

1) Building on the foundations ofepidemic analysis[8], we
propose a model to understand the fundamental trade-offs
and evaluate the performance of a hybrid opportunistic
and cellular communication approach. Our model reveals
that content tends to disseminate faster through oppor-
tunistic contacts when a sufficient, but not excessive,
number of nodes have already received the content; in
contrast, dissemination is slower when either few users
have the content or few users are missing it.

2) Based on our model, we derive the optimal strategy for
injecting content through the cellular network. In line
with our previous findings, this strategy uses the cellular
network when low speed of opportunistic propagation is
statistically expected, and lets the opportunistic network
spread the content the rest of the time.

3) We design an adaptive algorithm, based on control theory,
that implements the optimal strategy for injecting content
through the cellular network. The key strengths of this
algorithm over previous approaches are that it adapts to
the current network conditions without monitoring the
nodes’ mobility and that it incurs very low signaling
overhead and complexity. Both features are essential
features for a practical implementation.

The rest of the paper is structured as follows. After thor-
oughly reviewing related work in Section II, we outline the
basic design guidelines of our approach and theoretically
analyze its performance in Section III. Based on this anal-
ysis, in Section IV, we then derive the optimal strategy and
present our adaptive algorithm, which implements this optimal
strategy. The algorithm’s performance is extensively evaluated
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in Section V, using mobility models as well as experimental
contact traces. Finally, Section VI closes the paper with some
final remarks.

II. RELATED WORK

The problem of the unsustainable increase in cellular net-
work traffic and how to offload some of it has become more
and more popular. Two types of solutions can be distinguished,
on the basis of the outlet chosen for part of the cellular traffic:
(i) offloading through additional (new or existing) infrastruc-
ture, and (ii) offloading through ad hoc communication. Our
proposal, HYPE, falls into the second category.

In the first category, many solutions [9], [10] are aiming to
exploit the relatively large number of existing WLAN access
points, as well as cellular diversity. A different approach, based
on new infrastructure, is introduced in [11], in the contextof
vehicular networks. In that paper, the authors advocate the
deployment of fixed roadside infrastructure units and study
the performance of the system in offloading traffic information
from the cellular network.

In the second category, along with our study, an increasing
body of work is investigating the use of infrastructure-free
opportunistic networking as a complement for the cellular
infrastructure. In particular, the studies in [4]–[7], [12] propose
solutions based on this idea.

In [4], the authors propose to push updates of dynamic
content from the infrastructure to subscribers, which thendis-
seminate the content epidemically. The distribution of content
updates over a mobile social network is shown to be scalable,
and different rate allocation schemes are investigated to max-
imize the data dissemination speed. A substantial difference
between this work and HYPE is that [4] does not minimize the
load incurred in the cellular network and does not provide any
delay guarantees, which are central objectives in our approach.
Moreover, the solution introduced in [4] results in higher
resource consumption for the “most central” users (i.e., highest
contact rates) and/or the “most social” users.

Han et al. investigate, in [6], which initial subset of users
(who receive the content through the cellular) will lead to
the greatest infection ratio. A heuristic algorithm is proposed,
that uses the history of user mobility of the previous day to
identify a target set of users for the cellular deliveries. HYPE
differs significantly from this, in the following aspects: (i) the
solution in [6] is heuristic and thus does not guarantee optimal
performance, (ii) it requires to know the mobility patternsof
all users, which may not be realistic in most scenarios, and
(iii) it only investigateswhich users to choose, but nothow
manyof them.

In [7], an architecture is implemented to stream video
content to a group of smartphones users within proximity of
each other, using both the cellular infrastructure and WLAN
ad-hoc communication. The decision of who will download
the content from the cellular network is based on the phones’
download rates. In contrast to our work, the focus of [7] is on
the implementation rather than the model and the algorithm.
Indeed, the algorithm proposed is a simple heuristic, which
does not guarantee optimal performance.

Another study where opportunistic networking is used to
offload the mobile infrastructure is [12]. Here, some chosen

users, named “helpers”, participate in the offloading, and
incentives for these users are provided by using a micro-
payment scheme. Alternatively, the operator can offer the
participants a reduced cost for the service or better quality
of service. Thus, the focus of [12] is on incentives, which is
out of the scope of our work.

Most similar to HYPE is the Push-and-Track solution,
presented in [5]. There, a subset of users initially receive
content from a content provider and subsequently propagateit
epidemically. Upon reception of the content, every node sends
an acknowledgment to the provider, which may decide to re-
inject extra copies to other users. Upon reaching the content
deadline, the system enters into a “panic zone” and pushes
the content to all nodes that have not yet received it. The
most prominent difference between this approach and ours
is that Push-and-Track relies on a heuristic to choosewhen
to feed more content copies into the opportunistic network,
which does not guarantee that the load on the cellular network
is minimized. In contrast, we build on analytical results to
guarantee that performance is optimal. An additional drawback
of Push-and-Track is that it incurs a very high signaling
overhead, which compromises the scalability with the number
of subscribed users. Results in Section V confirm that our
theory-driven algorithm outperforms the heuristics proposed
in [5] both in terms of cellular load and of signaling overhead.

Finally, from a different perspective, HYPE is also related
to content dissemination solutions in purely opportunistic
networks [13], [14]. However, most of these studies focus
on finding the best ways to collaborate or contribute to the
dissemination, under various constraints (e.g., limited “public”
buffer space). Evaluation is usually based on the delay incurred
to obtain desired content or the equivalent metric of average
content freshness over time. In contrast, our metric is the load
incurred in the cellular network. However, when developing
our initial model, we do use a similar modeling method as in
purely opportunistic dissemination (e.g., [13], [15]).

Like all the previous works on offloading cellular networks
through opportunistic communications [4]–[6], with our ap-
proach all the transmissions over the cellular network are
unicast. There are several key reasons that limit the usage
of multicast messages in a cellular network. First, multicast
cannot be easily combined with opportunistic transmissions, as
this would require that the Content Server is aware of the cell
of each node and can dynamically select the subset of nodes
at each cell that receives the multicast message, which is not
possible with current cellular multicast approaches. Second,
in urban scenarios users will likely be associated to different
base stations (there are hundreds/thousands of them in the city,
each covering some sector, and in dense urban areas femtocells
have started to be deployed). Thus, there is a low probability
that users subscribed to a specific content are associated tothe
same cells at the same time, and hence multicast may collapse
to unicast. Finally, transmissions with multicast would occur
at the lowest rate to preserve users in the edge of the cell,
which degrades the resulting performance.

III. T HE HYPE APPROACH

In this section, we present the basic design guidelines of the
HYPE (HYbrid oPportunistic and cEllular) approach. HYPE is
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a hybrid cellular and opportunistic communications approach
that delivers content to a set of users by (i) sending the content
through the cellular network to an initial subset of the users
(which we will call seed nodes), and (ii) letting these initial
users or seed nodes share the content opportunistically with
the other nodes. We aim at designing HYPE so as to combine
the cellular and opportunistic communication paradigms ina
way that retains the key strengths of each paradigm, while
overcoming their drawbacks.

HYPE consists of two main building blocks: (i) theCon-
tent Server, and (ii) the Mobile Applications. The Content
Server runs inside the network infrastructure, while the Mobile
Applications run in mobile devices that are equipped with
cellular connectivity, as well as able to directly communicate
with each other via short range connections (e.g., via WLAN
or Bluetooth). The Content Server monitors the Mobile Ap-
plications and, based on the feedback received from them,
delivers the content through the cellular network to a selected
subset of Mobile Applications (the seed nodes). When two
mobile devices are within transmission range of each other,the
corresponding Mobile Applications opportunistically exchange
the content by using local (short-range) communications.

A. Objectives

The fundamental challenge of the HYPE approach is the
design of the algorithm that decideswhich mobile devices
andwhenthey should receive the content through the cellular
network. The rest of this paper is devoted to the design of
such an algorithm. The key objectives in the design are:

(i) Maximum Traffic Offload: Our fundamental objective is
to maximize the traffic offloaded and thus reduce the load
of the cellular network as much as possible. This is ben-
eficial both for the operators (who may otherwise need
to upgrade their network, if the cellular infrastructure is
not capable of coping with current demand), as well as
for the users (who must pay for cellular usage, either
directly or by seeing their data rate reduced).

(ii) Guaranteed delay: Most types of content have an expi-
ration time, arising either from the content’s usefulness
to the user (e.g., road traffic information), its validity
after an update (e.g., daily news) or its play-out time
(e.g., streaming). Therefore, a key requirement for our
approach is that the content reaches all the interested
users before its deadline.

(iii) Fairness among users: In order to make sure that all
users benefit from HYPE, it is important to guarantee
a good level of fairness both in terms of cellular usage
(for which users have to pay), as well as in terms of
opportunistic communications (which may increase the
energy consumption of the device).1

(iv) Reduced signaling overhead: The signaling overhead
between the Content Server and the Mobile Applications
needs to be low. This is important for two reasons:
first, to ensure that HYPEscaleswith the number of
mobile devices (otherwise the signaling traffic would

1Indeed, an important drawback of certain existing solutions is that they
tend to over-exploit the users with high contact rates [4], [6], thus discouraging
the participation of such users.

overload the cellular network); second, to avoid using
the cellular interface for small control packets (which
is highly energy inefficient due to the significant tail
consumption after a cellular transmission [16]).

The above objectives involve some trade-offs, making it
very challenging to satisfy all of them simultaneously. For
instance, to maximize the traffic offload, we may consider a
greedy approach, where the Content Server sends the content
to users with the highest contact rates; however this would
(i) deteriorate the fairness among users, and (ii) increasethe
signaling overhead to gather data on user mobility patterns.
Another approach may instead minimize the signaling over-
head by injecting content as long as there is enough bandwidth
available, avoiding thus any signaling; however, this willnot
maximize the traffic offload. In the following, we set the
basic design guidelines of an approach that satisfies all these
objectives.

B. Basic design guidelines

In order to satisfy the above objectives, a key decision of
HYPE is how to deliver a certain piece of content (hereafter
referred to asdata chunk) through the cellular network. In
particular, this decision involves the selection of the nodes to
which the data chunk is delivered via cellular, as well as the
times when to perform these deliveries.

In HYPE, a data chunk is initially delivered to one or more
users through the cellular network; additional copies may be
injected later if needed. The decision of when to inject another
copy of the chunk is driven by the number of users that have
already received it. As long as the deadline has not expired,
any user with a copy of the chunk will opportunistically
transmit it to all the users it meets, that do not have the
chunk. Finally, upon reaching the deadline of the content,
the remaining users that have not yet received the chunk,
download it from the cellular network;2 this ensures that the
delay guaranteesare met and thus we satisfy objective (ii)
from Section III-A.

In order to provide a good level of fairness among users,
which is objective (iii), HYPE selects each of the seed nodes
uniformly at random. Over the long term, this ensures that,
on the one hand, all users have the same load in terms of
cellular usage and, on the other hand, they also share fairly
well the load incurred in opportunistic communications. This
is confirmed by the simulation results presented in Section V,
which show that HYPE provides a good level of fairness while
paying a small price in terms of performance.3

The approach sketched above meets objectives (ii) and (iii).
In the following, we first present a model for the opportunistic
dissemination of content injected by a cellular network. Based
on this model, in Section IV we derive the optimal strategy for
the delivery of a single data chunk, that minimizes the load of
the cellular network fulfilling objective (i), and then we design

2An added advantage of this architecture is that the mobile nodes only need
to keep the data chunks for forwarding until their deadline and no longer. The
burden on the mobile nodes’ buffers is thus kept very low.

3This is also supported by the results of [5], which show that the difference
in terms of performance between the random selection and other strategies is
very small.
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an algorithm to implement this strategy, that incurs very low
signaling overhead thus also satisfying objective (iv).

C. Model

In order to derive the optimal strategy, with the above
approach, for the delivery of data chunks through the cellular
network, we need to determine:

• The total number of copiesof the data chunk to be
delivered by the cellular network. This is not trivial: for
example, an overly conservative approach, that delivers
too few copies before the deadline, may have the side-
effect of overloading the cellular network with a large
number of copies when the deadline expires.

• The optimal instantsfor their delivery. The decision of
when to deliver a copy of a data chunk through the
cellular network is based on the current status of the
network, which is given by the number of users that
already have the chunk.

In the following, we model the opportunistic dissemination
of content injected by a cellular network and analyze the
load of the cellular network as a function of the strategy
followed. Then, based on this analysis, in Section IV we obtain
the optimal strategy, that minimizes the load of the cellular
network for a given content deadline.

Let N be a set of mobile nodes subscribed to the same con-
tent, withN = |N | the size of this set (total number of nodes).
All nodes have access to the cellular network. Any two nodes
also have the ability to setup pairwise bi-directional wireless
links, when they are in each other’s communication range
(in contact). Thus, opportunistic communication happens via
the store-carry-forward method, through the sequences of
intermittent contacts established by node mobility.

At time 0, a data chunk is injected in the (opportunistic)
network, i.e., copies of the chunk are pushed via the cellular
interface to a small subset ofN , the seed nodes. Throughout
the model description, we follow the epidemic dissemination
of this chunk of content. We denote byM(t) the number
of mobile nodes holding the chunk at timet (we refer to
such nodes as “infected”). The delivery deadline assigned to
a data chunk is given byTc (its value depends on the mobile
application’s requirements).

1) Opportunistic communication:In the opportunistic
phase of HYPE, data are exchanged only upon contacts in
the networkN , therefore a mobility model based on contact
patterns is sufficient for our analysis.

We assume every pair of nodes(x, y) in the networkN
meets independently of other pairs, at exponentially distributed
time intervals4 with rate βxy > 0. Then, the opportunistic
networkN can be represented as a weighted contact graph
using theN ×N matrix B = {βxy}. We further assume that
the inter-contact ratesβxy are samples of a generic probability

4Though all pairwise inter-contact rates may not always be exactly ex-
ponential (preliminary studies of traces [17] suggested that this is true for
subsets of node pairs only), the most in-depth and recent studies [18], [19]
conclude that inter-contact time intervals do feature an exponential tail. This
is supported by the recent results of Passarella et al. [20],which show that the
non-exponential aggregated inter-contacts discovered inthe preliminary trace
studies [17] can, in fact, be the result of exponentially distributed pairwise
inter-contacts with different rates.

Fig. 1. Markov chain for HYPE communication, assuminghomogeneous
node mobility. Transitions can be caused either by (i) a contact between two
nodes, or (ii) injection of the chunk to one node through the cellular network
(instantaneous transition, represented with∞ rate in the figure).

distributionF (β) : (0,∞) → [0, 1] with known expectation
µβ (various distribution types forF (β) and their effects on
aggregated inter-contact times are investigated in [20]).Addi-
tionally, we assume that the duration of a contact is negligible
in comparison to the time between two consecutive contacts,
and that the transmission of a single chunk is instantaneousin
both the cellular and the opportunistic network.

The assumptions of exponential inter-contact and negligible
contact duration are the norm in analytical work dealing with
opportunistic networks [21]–[23]. Studies based on looser
assumptions (generic inter-contact models, non-zero contact
duration) have, so far, only resulted in broad, qualitative
conclusions (e.g., infinite vs. finite delay), while we aim at
obtaining more concrete, quantitative results. In addition, all
our simulations feature non-zero contact duration and some
of them also have non-exponential inter-contact times, thus
testing the applicability of our results outside the domainof
these assumptions.

Epidemic dissemination in opportunistic networks is typ-
ically described with a pure-birth Markov chain, similar to
the one in Fig. 1 (slightly adapted from, e.g., [21]). This
type of chain only models thenumber of copiesof a chunk
in the networkN at any point in time, regardless of the
specific nodes carrying those copies. This is only possible
when considering node mobility to be entirely homogeneous
(i.e., all node pairs meet at a unique rate:βxy = λ for all
x, y ∈ N ), which allows all nodes to be treated as equivalent.

However, as stated in the beginning of this subsection, we
consider node mobility to be heterogeneous, with node pairs
meeting at different ratesβxy with x, y ∈ N . In this case, not
only the number of spread copies must be modeled, but also
the specific nodes carrying those copies. This results in more
complex Markov chains, as illustrated in Fig. 2 for a4-node
networkN = {a, b, c, d}.

Transition rates in Markov chains like the one shown in
Fig. 2 depend on the nodes “infected” in each of the departure
and the arriving states. For example, in Fig. 2, the transition
between statea and stateab can happen if nodea meets node
b. Therefore, the transition time between these two states is
exponential with rate given by the meeting rate of the(a, b)
node pair,βab. Similarly, the transition between stateab and
stateabc can happen if nodea meets nodec, or if nodeb meets
nodec (whichever meeting happens first). Thus, the transition
time for this transition is the minimum of two exponential
variables with ratesβac andβbc. Since inter-contact times are
exponential, this minimum is also exponential with rateβac+
βbc, as shown in Fig. 2.

2) Cellular communication:The decision to deliver a copy
of the chunk through the cellular network is based on the
current dissemination level, i.e. the number of nodes that
already have the chunk. We say that the HYPE process or
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Fig. 2. Markov chain for epidemic spreading, assumingheterogeneous node
mobility . HYPE specific transitions (i.e., chunk injection by cellular) are left
out for clarity. This Markov chain is very complex and intractable for large
scenarios; in Theorem 1 we can then reduce it to an equivalentMarkov chain
that is much simpler and for which we can derive a closed-formsolution.

its associated Markov chain (similar to Fig. 2) is atlevel i,
when i mobile nodes are infected, i.e.,M(t) = i. Each level
i corresponds to a set of

(

N
i

)

states{Ki
1,K

i
2, . . . ,K

i

(Ni )
} in

the Markov chain. For instance, in our4-node network from
Fig. 2, the HYPE process is at level3, when the chain is in any
of the statesK3

1 = abc, K3
2 = abd, K3

3 = acd or K3
4 = bcd.

The strategy to transmit copies of the chunk over the cellular
network is given by the levels at which we inject a copy. We
denote these levels byC = {c1, c2, . . . , cd}: as soon as we
reach one of these levelsci ∈ C before the deadlineTc, a copy
of the chunk is sent to a randomly chosen node. With this, the
transitions in the HYPE Markov chain can be caused either
by: (i) a contact between two nodes (one infected, the other
uninfected), which occurs at rates indicated in the previous
subsection, or (ii) the injection of the chunk to one node
through the cellular network. The latter corresponds to an
instantaneous transition (since the chain instantly “jumps” to
a state of the next dissemination level), and is representedin
Fig. 1 with ∞ rate5. Finally, upon reaching the deadlineTc,
the chunk is sent through the cellular network to those nodes
that do not have the content by that time.

D. Analysis

Based on the above model, in the following, we analyze
the load of the cellular network (which is the metric that we
want to minimize) as a function of the strategy followed to
inject content (which is given byC = {c1, c2, . . . , cd}). The
cellular network load corresponds to the number of copies
delivered through the cellular network, which we denote by
D. Let pi(t) = P[M(t) = i] denote the probability of being
at level i at time t. Then,D is given by:

D =

N
∑

i=1

(di + d∗i )pi(Tc) (1)

where di is the number of deliveries through the cellular
network that take place until leveli is reached (di =

5Note that, for clarity, the Markov chain of Fig. 2 does not model transitions
caused by chunk injection through the cellular network. This type of transition
would be the same as in Fig. 1 (i.e.,∞ rate).

|{1, 2, . . . , i} ∩ C|) and d∗i is the number of copies deliv-
ered upon reaching the deadlineTc, if it expires at leveli
(d∗i = N − i).

In order to computepi(Tc), we first analyze the caseC =
{c1}6, i.e., when we only inject one copy of the data chunk
at the beginning and do not inject any other until we reach
the deadline. Letpc1i (Tc) denote the probability that, in this
case, the system is at leveli at timeTc. In order to compute
pcii (Tc), we model the transient solution of our Markov chain
as shown in the following theorem. (The formal proofs of the
theorems are provided in the Appendix.)

Theorem 1:According to the HYPE Markov chain for het-
erogeneous mobility (similar to Fig. 2), the process{M(t), t ≥
0} is described by the following system of differential equa-
tions:















d
dtp

c1
1 (t) = −λ1p

c1
1 (t), i = 1

d
dtp

c1
i (t) = −λip

c1
i (t) + λi−1p

c1
i−1

(t), 1 < i < N

d
dtp

c1
N (t) = λN−1p

c1
N−1

(t), i = N

(2)

where λi = i(N − i)µβ. (Recall thatµβ is the known
expectation of the generic probability distributionF (β) :
(0,∞) → [0, 1], from which the inter-contact rates describing
our network are drawn:{βxy} = B.)

Theorem 1 has effectively reduced our complicated Markov
chain for heterogeneous mobility back to a simpler Markov
chain, like the one in Fig. 1 (theλ factor being replaced by
µβ). In the simpler chain, each state represents a level of chunk
dissemination (i.e., number of nodes holding a copy of the
chunk). This is possible, as shown in the proof, thanks to the
fact that our heterogeneous contact ratesβxy are all drawn
from the same distribution,F (β) : (0,∞) → [0, 1], which
means that all the states of a certain dissemination leveli:
{Ki

1,K
i
2, . . . ,K

i

(Ni )
} are, in fact, statistically equivalent.

Applying the Laplace transform to the above differential
equations, and taking into account thatpc1i (0) = δi1, leads to















sP c1
1 (s) = −λ1P

c1
1 (s) + 1, i = 1

sP c1
i (s) = −λiP

c1
i (s) + λi−1P

c1
i−1(s), 1 < i < N

sP c1
N (s) = λN−1P

c1
N−1

(s), i = N

(3)

from which























P c1
i (s) =

1

s+ λi

i−1
∏

j=1

λj

s+ λj
, i < N

P c1
N (s) =

1

s

N−1
∏

j=1

λj

s+ λj
, i = N

(4)

In case we deliver the data chunk through the cellular
network at the levelsC = {c1, c2, . . . , cd}, then the transi-
tions corresponding to those levels are instantaneous, andthe

6Note thatc1 must necessarily be equal to0.
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Laplace transforms of the probabilitiesPi(s) are computed as:

Pi(s) =































1

s+ λi

∏

j∈Si−1

λj

s+ λj
, i < N, i /∈ C

0, i < N, i ∈ C

1

s

∏

j∈SN−1

λj

s+ λj
, i = N

(5)

where Si−1 is the set of levels up to leveli − 1, without
including those that belong to setC, i.e.,Si−1 = {1, 2, . . . , i−
1} \ ({1, 2, . . . , i− 1} ∩ C). For the levelsi ∈ C, we simply
havePC

i (s) = 0, since we will never be at these levels.
From Eq. (5), we can obtain a closed-form expression for

the probabilitiespi(t) as follows. The polynomialPi(s) is
characterized by first and second order poles which have all
negative real values. Let{s = −λn} be the poles ofPi(s).
Then,pi(t) for i < N, i /∈ C is computed as:

pi(t) =





∏

j∈Si−1

λj





∑

{s=−λn}

Res

(

est
∏

j∈Si
(λj + s)

)

(6)

whereRes indicates the residue, which is given by:

Res
s=−λn







est
∏

j∈Si

(λj + s)






=























































e−λnt

∏

j∈Si

j 6=n

(λj − λn)
, −λn is a 1st order pole

e−λnt






t−

∑

j∈Si

λr 6=λn

1

(λr − λn)







∏

j∈Si

λj 6=λn

(λj − λn)
, −λn is a 2nd order pole

Additionally, for i < N, i ∈ C we havepi(t) = 0, and for
i = N , pN (t) = 1−

∑N−1

i=1
pk(t).

By evaluatingpi(t) at timet = Tc and applying Eq. (1), we
can compute the average number of deliveries over the cellular
network,D.

IV. OPTIMAL STRATEGY AND ADAPTIVE ALGORITHM

In this section, we first leverage on the above model to
determine the optimal strategy for the delivery of data chunk,
and then we design an adaptive algorithm to implement this
strategy.

A. Optimal strategy analysis

Our goal is to find the best strategyC = {c1, c2, . . . , cd}
for injecting chunk copies over the cellular network, that
minimizes the total loadD of the cellular network while
meeting the content’s deadlineTc. To solve this optimization
problem, we proceed along the following two steps:

1) We show that the optimal strategy is to deliver the content
through the cellular network only at the beginning and at
the end of the data chunk’speriod, and never in-between.

The data chunk’speriod is defined as the interval between
t = 0 (when we first start distributing the content) and
t = Tc (when the content’s deadline expires).

2) We obtain the optimal number of copies of the chunk to
be delivered at the beginning of the period such that the
average load of the cellular network,D, is minimized.

The following theorem addresses the first step.
Theorem 2:In the optimal strategy, the data chunk is de-

livered through the cellular network tod seed nodes at time
t = 0, and to the nodes that do not have the content by the
deadline at timet = Tc.

According to Theorem 2, the optimal strategy is to: (i) de-
liver a number of copies through the cellular network at the
beginning of the period, (ii) wait until the deadlinewithout
delivering any additional copy, and (iii) deliver a copy of the
chunk to the mobile nodes missing the content at the end of
the period.

The intuition behind this result is as follows. When few
users have the content, information spreads slowly, since it is
unlikely that a meeting between two nodes involves one of
the few that have already the content. Similarly, information
spreads slowly when many users have the content, as a
meeting involving a node that does not yet have the content
is improbable.

The strategy given by Theorem 2 avoids the above situations
by delivering a number of chunk copies through cellular
communication at the beginning (when few users have the
content) and at the end (where few users miss the content).
As a result, the strategy lets the content disseminate through
opportunistic communication when the expected speed of
dissemination is higher, which allows to minimize the average
load of the cellular network.

The second challenge in deriving the optimal strategy is
to compute the optimal number of copies of the chunk to be
delivered at the beginning of the period, which we denote by
d. To that end, the following proposition defines the notion of
gain and computes it:

Proposition 1: Let us defineGd as the gain resulting from
sending the(d + 1)th chunk of chunk copy at the beginning
of the period (i.e.,Gd = Dd − Dd+1, whereDd+1 andDd

are the values ofD when we deliverd+1 andd copies at the
beginning, respectively). Then,Gd can be computed from the
following equation:

Gd =
N−1
∑

j=d

λj

λd
pdj (Tc)− 1, (7)

Building on the above notion ofGd, the following theorem
provides the optimal point of operation:

Theorem 3:The optimal value ofd is the one that satisfies
Gd = 0.

The rationale behind the above theorem is as follows. When
Gd > 0, by sending one additional copy at the beginning,
we save more than one copy at the end of the period and
hence obtain a gain. Conversely, whenGd < 0, we do not
benefit from increasingd. The proof shows thatGd is a
strictly decreasing function ofd, which implies that, to find
the optimal point of operation, we need to increased as long
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asGd > 0 and stop when we reachGd = 0 (after this point,
Gd < 0 and further increasingd yields a loss).

B. Adaptive algorithm for optimal delivery

While the previous section addressed the delivery of a single
data chunk, in this section we focus on the delivery of the
entire content, e.g., a flow of road traffic updates, news feeds
or a streaming sequence. We consider that the distribution
of content in mobile applications is typically performed by
independently delivering different pieces of content in a se-
quence of data chunks. For instance, a streaming content of
800MB may be divided into a sequence of chunks of1MB.
When delivering chunks in sequence, we need to adapt to
the system dynamics. For instance, inter-contact time statistics
may vary depending on the time of the day [24], which means
that the optimald value obtained by Theorem 3 needs to be
adapted accordingly. Similarly, the number of mobile nodesN
subscribed to the content may change with time, e.g., based
on the content popularity.

To address the above issues, we design an adaptive algo-
rithm based on control theory, that adjusts the number of
chunk copiesd delivered at the beginning of each period
to the behavior observed in previousrounds (hereafter we
refer to the sequence of periods as rounds). For instance, in
the example above we would have a total of800 rounds. In
the following, we first present the basic design guidelines of
our adaptive algorithm. Building on these guidelines, we then
design our system based on control theory. Finally, we conduct
an analysis of the system to guarantee its stability and ensure
good response times.

C. Adaptive algorithm basics

In order to devise an adaptive algorithm that drives the
system to optimality, we first need to identifywhich variable
we should monitor andwhat valuethis variable should take in
optimal operation. To do this, we build on the results of the
previous section to design an algorithm that: (i) monitorshow
many additional infected nodeswe would have at the end of
a round, if we injected one extra copy at the beginning of that
round; and (ii) drives the system to optimality by increasing
or decreasingd depending on whether this number is above
or below its optimal value.

To efficiently monitor the number of additional infected
nodes, we apply the following reasoning. According to Theo-
rem 3, in optimal operation, one extra delivery at the beginning
of a round leads to one additional infected node at the end
of that round. If we focus on a single copy of the chunk
delivered over the cellular network and consider it as the extra
delivery, the nodes that would receive the content due to this
one extra delivery are those thatreceived this specific copy
and could not have received the chunk from any other source.
Since this holds for each of thed copies delivered over the
cellular network, in optimal operation there are on averagea
total of d nodes at the end of the round, which receivedthe
chunk from one source and could not have received it from any
other source. Our algorithm focuses on this aggregate behavior
of thed deliveries rather than on a single copy, as this provides
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Fig. 3. Example of chunk dissemination in optimal operation. Nodea and
b receive a copy of the chunk from the Content Server (d = 2). At the end
of the round, there are two nodes with a single copy ID, that is, s = 2.

more accurate information about the epidemic dissemination
of the data chunk.

Based on this, each round of the adaptive algorithm pro-
ceeds as follows (see Fig. 3 for an example):

1) Initially, copies of the data chunk are transmitted to a
random set ofd seed nodes over the cellular network.
Each of the copies is marked with a differentID that
uniquely identifies the source of the copy.

2) When a node that does not have the chunk receives it
from another node opportunistically, it records theID of
the copy received.

3) If two nodes that have copies with differentIDs meet,
they mark this event, to record that they could have
potentially received the chunk from different sources.7

We say that such nodes have “several copyIDs”, while
those that keep only oneID have a “single copyID”.

4) If a node who does not have any copy or has a single copy
ID meets with another node who recorded the “several
copy IDs” event, the first node also marks its copy with
the “several copyIDs” mark.

5) At the end of the round, the nodes whose chunk comes
from a single source (i.e., no “several copyIDs” mark)
send a signal to the Content Server.

By running the above algorithm, we count the number of
nodes whose copy of the chunk comes from a single source
(i.e., who have a single copyID at the end of the round), which
we denote bys. As argued at the beginning of this section, in
optimal operation this number is equal to the number of seed
nodes. This implies that, at this operating point,the number
of data chunks injected through the cellular network at the
beginning of the roundis equal, in expectation, tothe number
of signals received at the end of the round, i.e., s = d.

A key feature of the above algorithm design is that it does
not require gathering any complex statistics on the network,
such as the behavior of the mobile nodes, their mobility or
social patterns, or their contact rates. Instead, we just need to
keep track of the number of chunks injected at the beginning
of each round and the signals received at the end, and this
is sufficient to drive the system to optimal operation. As a

7Note that, for a node with “several copyIDs”, we only mark the event
and do not keep theIDs of the copies, since (i) we are only interested in
signaling the number of nodes with a single copyID, and (ii) this leads to
more efficient operation, requiring fewer communications and less protocol
overhead.
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Fig. 4. Our system is composed by two modules: the controlledsystem
H(z), that models the behavior of HYPE, and the PI controllerC(z), that
drives the controlled system to the optimal point of operation.

result, the proposed algorithm involves very reduced signaling
overhead, which fulfills one of the objectives that we had
identified in Section III-A, namely objective (iv).

D. System design

Based on the above design guidelines, our adaptive algo-
rithm should (i) monitor the number of signals received at the
end of each round, and (ii) drive the system to the point of
operation where this value is equal to the number of copies
injected at the beginning of the round. To do this, in this paper
we rely on control theory, which provides the theoretical basis
for monitoring a given variable (theoutput signalin control
theory terminology) and driving it to some desired value (the
reference signal).

Following a control theoretic design, we propose the system
depicted in Fig. 4. This system is composed from a controller
C(z), which is the adaptive algorithm that controls the chunk
delivery, and the controlled systemH(z), which represents
the HYPE network. Furthermore, the componentz−1 provides
the delay in the feedback-loop (to account for the fact that
the d value used in the current round is computed from the
behavior observed in the previous round). For the controller,
we have decided to use a Proportional-Integral (PI), because
of its simplicity and the fact that it guarantees zero error in
the steady-state. Thez transform of the PI controller is given
by:

C(z) = Kp +
Ki

z − 1
(8)

whereKp andKi are the parameters of the controller.
Here, the variable that we want to optimally adjust is the

number of deliveries at the beginning of the round (i.e.,d).
Following classical control theory [25], this variable is the
control signalprovided by the controller. In each round, the
controller monitors the system behavior (and in particularthe
output signal, which we will define later), given the value
d that is currently used. Based on this behavior, it decides
whether to increase or decreased in the next round, in order
to drive the output signal to the reference signal.

A key aspect of the system design is the definition of the
output and reference signals. On the one hand, we need to
enforce that by driving the output signal to the reference signal,
we bring the system to the optimal point of operation. On the
other hand, we also need to ensure that the reference signal is
a constant value that does not depend on variable parameters,
such as the number of nodes or the contact rates.

Following the arguments exposed in Section IV-C, we
design the output signalO(t) and the reference signalR of

our controller as follows:
{

O(t) = s(t)− d(t)

R = 0
(9)

where d(t) is the number of deliveries at the beginning of
a given roundt, and s(t) is the number of signals received
at the end of this round. Note that, with the above output
and reference signals, by drivingO(t) to R we bring the
system to the point of operation given bys = d, which,
as discussed previously, corresponds to the optimal point of
operation. Following classical control theory, we represent the
randomness of the system by adding some noiseW (t) to the
output signal, as shown by Fig. 4.

E. Control theoretic analysis

The behavior of the proposed system (in terms of stability
and response time) depends on the parameters of the controller
C(z), namelyKp and Ki. In the following, we conduct a
control theoretic analysis of the system and, based on this
analysis, calculate the setting of these parameters. Note that
this analysis guarantees that the algorithm quickly converges
to the desired point of operation and remains stable at that
point.

In order to analyze our system from a control theoretic
standpoint, we need to characterize the HYPE network with a
transfer functionH(z) that takesd as input and providess−d
as output. In order to deriveH(z), we proceed as follows.
According to the definition given in Proposition 1,Gd is the
gain resulting from sending an extra copy of the chunk. In
one round, by sending one extra copy of the chunk at the
beginning, there are on averages/d additional nodes that have
the chunk at the end. Indeed,s is the total number of nodes that
receive the chunk from only one of thed initial seed nodes,
which means that on average each seed node contributes with
s/d to this number. This yields to:

Gd = s/d− 1, (10)

from which:
s− d = Gdd. (11)

The above provides a nonlinear relationship betweend and
s − d, sinceGd (given by Eq. (7)) is a non-linear function
of d. To express this relationship as a transfer functionH(z),
we linearize it at the optimal point of operation.8 Then, we
study the linearized model and ensure its stability through
appropriate choice of parameters. Note that the stability of the
linearized model guarantees that our system is locally stable.9

To obtain the linearized model, we approximate the pertur-
bations suffered bys − d at the optimal point of operation,
∆(s−d), as a linear function of the perturbations suffered by
d, ∆d,

∆(s− d) ≈
∂(s− d)

∂d
∆d, (12)

8This linearization provides a good approximation of the behavior of
the system when it suffers small perturbations around the stable point of
operation [26]. Note that the approximation only affects the transient analysis
and not the analysis of the stable point of operation at whichthe system is
brought by the algorithm.

9A similar approach was used in [27] to analyze the Random Early
Detection (RED) scheme from a control theoretic standpoint.
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which gives the following transfer function for the linearized
system:

H(z) =
∂(s− d)

∂d
. (13)

Combining the above with Eq. (11), we obtain the following
expression forH(z):

H(z) =
∂(s− d)

∂d
= Gd + d

∂Gd

∂d
. (14)

EvaluatingH(z) at the optimal point of operation (Gd = 0)
yields:

H(z) = d
∂Gd

∂d
. (15)

To calculate the above derivative, we approximateλi (given
by λi = i(N − i)µβ) by its first order Taylor polynomial
evaluated at leveli = d̂, where d̂ is the average value ofi
at time Tc (i.e., the average number of nodes that have the
chunk at the deadline). Since the Taylor polynomial provides
an accurate approximation for small perturbations aroundd̂,
and the number of nodes that have the chunk at timeTc is
distributed around this value, we argue that this approximation
leads to accurate results. The first order Taylor polynomialfor
λi at i = d̂ is:

λi ≈ λd̂ − (i− d̂)(2d̂−N)µβ . (16)

Substituting this into Eq. (7) yields

Gd =
1

λd

N
∑

i=1

pdi (Tc)
(

λd̂ − (i− d̂)(2d̂−N)λ
)

− 1

=
λd̂

λd
− 1 =

d̂(N − d̂)µβ

d(N − d)µβ
− 1 (17)

Since at the optimal point of operation we haveGd = 0,
this implies that (at this operating point)d = d̂. Moreover,
from Theorem 3 we have that, when operating at the optimal
point, if we deliver one additional copy at the beginning
(i.e., increased by one unit), this leads to one additional
node with the chunk at the end (i.e.,d̂ also increases by one
unit). Therefore, at the optimal operating point we also have
∂d̂/∂d = 1. Accounting for all of this when performing the
partial derivative ofGd yields:

∂Gd

∂d
=

2(2d−N)

d(N − d)
, (18)

from which:

H(z) = d
∂Gd

∂d
= −

2(N − 2d)

N − d
. (19)

Having obtained the transfer function of our HYPE network,
we finally address the configuration of the controller parame-
tersKp andKi, that will ensure a good trade-off between our
system’s stability and response time. To this end, we apply the
Ziegler-Nichols rules [28], which have been designed for this
purpose. According to these rules, we first obtain theKp value
that leads to instability whenKi = 0; this value is denoted
by Ku. We also calculate the oscillation timeTi under these
conditions. Once theKu andTi values have been derived,Kp

andKi are configured as follows:

Kp = 0.4Ku, Ki =
Kp

0.85Ti
. (20)

Let us start by computingKu, i.e., theKp value that ensures
stability whenKi = 0. From control theory [25], we have that
the system is stable as long as the absolute value of the closed-
loop gain is smaller than1. The closed-loop transfer function
T (z) of the system depicted in Fig. 4 is given by:

T (z) =
−H(z)C(z)

1− z−1H(z)C(z)
. (21)

To ensure that the closed-loop gain of the above transfer
function is smaller than1, we need to impose|H(z)C(z)| < 1.
Doing this forKi = 0 yields:

|H(z)C(z)| =

∣

∣

∣

∣

−
2(N − 2d)

N − d
Kp

∣

∣

∣

∣

< 1. (22)

The above inequality gives the following upper bound for
Kp, at which the system turns unstable:

Kp <
N − d

2(N − 2d)
. (23)

We want to ensure that the system is stable independently
of N and d, that is, the above inequality holds for anyN
andd values. Since the smallest possible value that the right-
hand side of Eq. (23) can take is1/2 (when d → 0), the
system is guaranteed to be stable as long asKp < 1/2, and
may turn unstable whenKp exceeds this value. Accordingly,
we setKu = 1/2. Furthermore, when the system becomes
unstable, the control signald may change its sign up to every
round, yielding an oscillation period of two rounds, which
givesTi = 2. With theseKu andTi values, we setKp and
Ki following Eq. (20),

Kp =
0.4

2
, Ki =

0.4

2 · 2 · 0.85
, (24)

which terminates the configuration of the PI controller.
While the Ziegler-Nichols rules aim at providing a good

trade-off between stability and response time, they are heuris-
tic in nature and thus do not guarantee the stability of the
system. The following theorem proves that the system is stable
with the proposed configuration.

Theorem 4:The HYPE control system is stable for
Kp = 0.2 andKi = 0.4/3.4.

V. PERFORMANCEEVALUATION

In this section, we evaluate HYPE for a wide range of sce-
narios, including several instances of a heterogeneous mobility
model, as well as real-world mobility traces. We show that:

• The analytical model provides very accurate results.
• The optimal strategy for data chunk delivery effectively

minimizes the load incurred in the cellular network.
• The proposed adaptive algorithm is stable and quickly

converges to optimal operation.
• HYPE outperforms previously proposed heuristics in

terms of the cellular load, signaling load and fairness
among users.

From the four design objectives introduced in Section III-A,
our evaluation focuses on the traffic offload, fairness and
signaling overhead. Note that, since the delay guarantees are
satisfied by design, we meet the objective on the delay.
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a) Simulation setting:To evaluate the performance of
HYPE, we use both real mobility traces and a heterogeneous
mobility model. For the evaluation with real mobility traces,
we select the contact traces collected in the Haggle projectfor
4 days during Infocom 2006 [24], and the GPS location traces
of San Francisco taxicabs,10 collected through the Cabspotting
project [29]. The number of users for the Infocom 2006 and
San Francisco traces are78 and536, respectively.

As for the heterogeneous mobility model, we generate
contacts as follows. For any given node pair(x, y), the
pairwise inter-contact times are exponentially distributed with
rate βxy. The pairwise contact rates,βxy, are drawn from
a Pareto distribution11 with meanµβ (which determines the
average frequency of the contacts) and standard deviationσ
(which determines the level of heterogeneity). To account for
sparser scenarios, we also run some experiments where a node
pair has a probabilityp > 0 of never meeting, i.e.,βxy = 0
(otherwise the inter-contact rate for the pairβxy is drawn as
above). In addition, we generate contact durationsδ from a
Pareto distribution with parameterα = 2, as observed in [30].
Following the findings in [17], we choose the average contact
rateµβ and the average contact durationE[δ] values such that
1/(µβ · E[δ]) is between100 and1000.

In all the simulations, we set the throughput of the cellular
communication to one mobile node equal to600 kb/s [31] and
the bandwidth of opportunistic communication to20Mb/s.
All the results given in this section are provided with95%
confidence intervals below0.1%.

b) Baseline scenarios:For the heterogeneous mobility
model, we use the following four baseline scenarios:

• streaming: N = 100, mean contact rateµβ = 13 con-
tacts/pair/day [24] andσ = 0.58 · µβ , Pareto-distributed
contact durationE[δ]=66.46 s,Tc = 120 s [32] and chunk
sizeL = 1MB,

• road traffic update: N = 1000, mean contact rateµβ =
1.2 contacts/pair/day andσ = 1.5 ·µβ , Pareto-distributed
contact durationE[δ] = 72 s, Tc = 600 s, L = 1MB [5],

• news feed: N = 100, mean contact rateµβ = 0.69
contacts/pair/day [24] andσ = 2 · µβ , Pareto-distributed
contact durationE[δ]= 125 s, Tc = 3600 s [32], L =
0.5MB,

• social data: N = 50, mean contact rateµβ = 3.5
contacts/pair/day [24] andσ = µβ , Pareto-distributed
contact durationE[δ]= 164 s, Tc = 900 s, L = 4KB.

A. Validation of the model

In order to validate the analysis conducted in Section III,
we evaluate the total load incurred in the cellular network (D)
as a function of the strategy followed (which is given by the
number of copies of the data chunk delivered at the beginning
of a round,d). The results obtained are depicted in Fig. 5 for
a scenario withN = 200, σ = 0.04 contacts/pair/day, and dif-
ferent values ofTc (in seconds) andµβ (in contacts/pair/day).
We observe that the analytical results follow very closely those

10We assume two taxicabs are in contact when they are within100 meters
of each other.

11Under these conditions, the tail of the aggregate inter-contact times decays
as a power law with exponential cut-off [20], as observed in traces, in [19].
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Fig. 6. Validation of the optimal strategy for the four baseline scenarios.

resulting from simulations, which validates the accuracy of our
analysis. We further observe that, as pointed out in SectionIV,
performance degrades for smaller and larger values ofd, since
when either too few or too many nodes have the content,
information spreads slowly. The figure finally shows that –
given µb = 17 – a smallerTc (of 40 s) causes a higher load
of cellular network than a larger one (of60 s).

B. Performance gain and validation of the optimal strategy

We next evaluate the performance gains that can be achieved
by opportunistic communications in the four baseline scenarios
identified earlier and validate the optimal strategy to confirm
that it achieves the highest possible gains. Fig. 6 gives the
performance obtained for the four baseline scenarios with:
(i) the optimal d value provided by Theorem 3, labeled
Optimal Strategy, (ii) the strategy proposed in Section IV-C
for the design of the adaptive algorithm, labeledd = s, and
(iii) the adaptive algorithm implemented by HYPE, labeled
HYPE. For each strategy, the figure shows the absolute average
load of the cellular network in number of chunk copies per
round (D).

The results obtained show that the proposed approach can
reduce very substantially the load of the cellular network
(with offloaded traffic ranging from almost50% in the social
data scenario to more than95% in the road traffic one). The
tests also show that the adaptive algorithm implemented by
HYPE is very effective in minimizing this load, as it performs
practically as the benchmarks given by the optimal andd = s
strategies.
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Fig. 7. Cellular loadD as a function of the level of heterogeneity (σ) and
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C. Impact of heterogeneity and sparsity

To understand the impact of the heterogeneity of pairwise
contact ratesβxy on the proposed approach, Fig. 7 depicts the
total cellular loadD for the streaming scenario, with varying
σ’s. The effect of network sparsity is also shown by using
different values for the the probabilityp that a pair of nodes
never meet.

We note that HYPE achieves a performance very close to
the optimal, which confirms that the HYPE design also works
for heterogeneous settings, as well as sparse ones. In the
sparsest tested scenario (p = 0.50), D increases by≈ 38%
as compared top = 0, as a result of the slower dissemination
caused by the decreasing number of connections (i.e., larger
p). Furthermore, for all testedp values, the cellular loadD is
mostly insensitive to variations ofσ both for HYPE and the
optimal strategy, which is in line with Theorem 1.

D. Stability and response time

Based on the control theoretic analysis conducted in Sec-
tion IV, the parametersKp,Ki of the PI controller have been
chosen to guarantee stability and ensure a good response time.
In order to assess the effectiveness of this configuration, we
evaluate its performance for the streaming baseline scenario
and compare it against different choices for the values of pa-
rametersKp,Ki. In Fig. 8, we show the evolution of the con-
trol signald over time for our settingKp = 0.2,Ki = 0.1176,
as well as a setting of these parameters ten times larger, labeled
[Kp,Ki] × 10 and ten times smaller, labeled[Kp,Ki]/10.
In the test,µβ increases from13 contacts/pair/day to40
contacts/pair/day after250 rounds. (For instance, this could
be the result of an increase in the number of contacts at
rush hour). Results show that our setting is stable and reacts
quickly, while a larger setting ofKp,Ki is highly unstable and
a smaller setting reacts very slowly. This confirms the choice
of parameters made for our controller.We also conducted a
similar experiment in which we variedN (which could be
for instance the result of a change in content popularity) and
observed a similar behavior (not shown in the figure for space
reasons).

The above experiment shows the response of the controller
to a drastic change.In order to confirm that this response is
sufficiently quick to follow the variations of the opportunistic
contacts in a realistic environment, we consider the San
Francisco real traces and study the temporal evolution of the
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Fig. 8. Evolution of the control signald over time for differentKp,Ki

settings. Our selection of parameters is stable and reacts quickly.

0 100 200 300 400 500
200

250

300

350

400

450

500

Round
C

el
lu

la
r 

Lo
ad

 (
D

)

 

 

Optimal Strategy
HYPE

Fig. 9. San Francisco real traces (N = 536): Temporal evolution of the
cellular loadD for HYPE and optimal strategy, with deadlineTc = 600 sec.

cellular loadD. To provide a benchmark, we compare HYPE
against an optimal strategy that selects the bestd value every
ten rounds.12 The results, for a content deadlineTc = 600 s,
are plotted in Fig. 9. These results confirm that HYPE reacts
rapidly to dynamic conditions: as there are fewer number
of contacts during night time, HYPE needs to inject more
content through the cellular network (up toD ≈ N ), while
the higher number of contacts during day time greatly reduces
the network load (D ≈ 220).

E. When to deliver: HYPE strategy versus other approaches

One of our key findings in Section IV is that performance is
optimized when all the deliveries over the cellular networktake
place at the beginning and at the end of the period. To validate
this result, Fig. 10 compares the performance of HYPE against
the Push-and-Track heuristics proposed in [5] (namely,Sqrt,
Linear and Quadratic), which distribute the deliveries along
the period. Results are given for the social data scenario
with a varying number of subscribed usersN . We observe
from the figure that HYPE substantially outperforms all other
approaches (the cellular load is even halved, in some cases),
and performs very closely to theOptimal Strategybenchmark.

In addition to the above experiment, conducted with a
mobility model, we also compare the performance of HYPE
against the other approaches with real mobility traces. The
results, depicted in Fig. 11, show that HYPE closely follows
the performance of the benchmark given by the optimal strat-
egy and outperforms previous heuristics. For the San Francisco
real traces, HYPE can offload about20% more traffic than the

12For the optimal strategy, we make an exhaustive search over all possible
d values every ten rounds and select the best one. Note that such a strategy
cannot be used in practice and is only considered for comparison purposes.
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Fig. 11. Tests using real mobility traces for different deadlines Tc. HYPE
performs closely to the benchmark provided by the optimal strategy and
substantially outperforms previous heuristics.

previous heuristics. For the Infocom 2006 traces, the employed
strategy has a smaller impact on cellular load performance,
which yields to a smaller gain (up to about12%).13

F. Which seed nodes: comparison to other selection methods

One of the key decisions in the HYPE design is to randomly
select a node when transmitting content over the cellular
network. In order to gain insight into the impact of this design
decision, we compare HYPE against the heuristic approach
proposed in [6] to select the seed nodes in the opportunistic
network. Unlike HYPE, [6] requires full knowledge of the

13Indeed, by conducting experiments with the Infocom 2006 traces for
many different strategies (unreported here for space reasons), we observed
that performance was relatively similar for all of them, which shows that the
impact of the specific strategy followed is limited for this case.
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Fig. 12. HYPE versus the heuristic solution of [6], varying the heterogeneity
(σ). HYPE provides a much better trade-off between fairness and cellular load
performance.

pairwise contact rates to identify the target set of users, which
involves a much higher level of complexity. Note that, since[6]
does not provide an algorithm to compute the number of copies
d of the data chunk, we apply the HYPE strategy to compute
d also for [6].

Fig. 12 shows the performance of both approaches in terms
of cellular traffic load (D) and fairness for different values
of heterogeneityσ, for the social data scenario. To measure
fairness, we apply the Jain’s Fairness Index (JFI) to the
total number of cellular and opportunistic communications
involving a node.14 The results show that HYPE provides a
much higher level of fairness than [6] with negligible loss
in terms of cellular traffic load. Therefore, HYPE does not
only feature a simpler implementation than [6], as it does
not need to know the individual inter-contact rates, but also
provides a much better trade-off between fairness and cellular
load performance. The results of this and the previous section
are particularly relevant as the algorithms of [5] and [6] are
the only existing proposals in the literature to offload cellular
networks with opportunistic communications while providing
deterministic delay guarantees.

G. Signaling load

In order to gain insight into the scalability of our design,
we analyze the number of uplink signaling messages sent
over cellular network. In HYPE, such messages are the
signals sent by the nodes with a single copyID to the
Content Server at the end of the period. Fig. 13 shows the
signaling load of HYPE as a function of the number of
users for each of the four baseline scenarios, and compares it
with the Push-and-Track heuristics (labeled asHeuristics [5]
in the figure), which require an uplink signal each time
a node receives the chunk.15 In contrast, HYPE scales
very efficiently with the number of users: the more users are
subscribed to the content, the lower the signaling load per user.

14For instance, a node that (i) receives the content through the cellular
network and (ii) sends it ton nodes in range during the period, will have a
total number of communications equal ton+ 1.

15We have not compared the signaling messages of HYPE against the
approach of [6] since that approach requires gathering datafrom nodes’
mobility patterns. Even though [6] does not explain the signaling mechanism
employed, we expect that the need to collect the mobility patterns involves a
substantially higher signaling overhead than [5].
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Fig. 13. HYPE signaling load as a function of the number of nodesN for
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and scales very efficiently with the number of nodes.

Summarizing the results of the performance evaluation
conducted inthis section, we have shown that our analytical
model is very accurate, that the optimal strategy proposed does
indeed minimize the load incurred in the cellular network,
that the adaptive algorithm is stable and quick to converge
to optimality and that HYPE outperforms existing heuristics
in crucial aspects: cellular load, signaling load and fairness
among users.

VI. CONCLUSION

In this paper we have presented HYPE, a novel approach to
offload cellular traffic through opportunistic communications.
To design HYPE, we have developed a theoretical model to
analyze the performance of opportunistic dissemination when
data can be selectively injected through a cellular network.
Based on this model, we have derived the optimal strategy that
minimizes the total amount of data injected through the cel-
lular network while meeting delay guarantees. To implement
the optimal strategy obtained from the analysis, HYPE runs
an adaptive algorithm that adjusts the data delivery over the
cellular network to the current network conditions. By building
on control theory, we guarantee that this algorithm is stable
and quickly adapts to dynamic conditions. The algorithm
incurs very low signaling overhead and does not need to
monitor the contacts between nodes nor to gather complex
statistics, which are important requirements for a practical
implementation.
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APPENDIX

Theorem 1:According to the HYPE Markov chain for het-
erogeneous mobility (similar to Fig. 2), the process{M(t), t ≥
0} is described by the following system of differential equa-
tions:















d
dtp

c1
1 (t) = −λ1p

c1
1 (t), i = 1

d
dtp

c1
i (t) = −λip

c1
i (t) + λi−1p

c1
i−1(t), 1 < i < N

d
dtp

c1
N (t) = λN−1p

c1
N−1

(t), i = N

(25)

where λi = i(N − i)µβ . (Recall thatµβ is the known
expectation of the generic probability distributionF (β) :
(0,∞) → [0, 1], from which the inter-contact rates describing
our network are drawn:{βxy} = B.)

Proof: Recall that we denoted by{Ki
1,K

i
2, . . . ,K

i

(Ni )
}

the set of
(

N
i

)

states in the Markov chain corresponding to
level i. Also, B = {βxy} is our network. Then, assuming the
Markov chain starts in initial stateK1

m for 1 6 m 6 N (i.e.,
the chunk was initially injected to a nodem), the probability
of still being in this state after a small time intervaldt is:

P
[

K
1
m at t+ dt | B

]

= P
[

K
1
m at t | B

]

·











1−
∑

x∈K
1
m

y/∈K
1
m

βxy dt











(26)
Then, averaging over all states of this dissemination level,

the probability of still being at dissemination level1 after a
small time intervaldt is:

P [1 at t+ dt | B] =

N
∑

m=1

P
[

K
1
m at t+ dt | B

]

(27)

Finally, considering all possible network realizations:

pc11 (t+ dt) = P [1 at t+ dt]

=

∫

B

N
∑

m=1

P
[

K
1
m at t+ dt | B

]

P [B] dB, (28)

where P [B] is given by the generic distribution,F (β) :
(0,∞) → [0, 1], which determines the inter-contact rates of
our network. Combining this last equation with Eq. (26) and

using basic probability theory, we obtain Eq. (29) below:

pc11 (t+ dt) =

∫

B

N
∑

m=1

P
[

K
1
m at t | B

]











1−
∑

x∈K
1
m

y/∈K
1
m

βxy dt











P [B] dB

=

∫

B

N
∑

m=1

P
[

K
1
m at t | B

]

P [B] dB −

−

∫

B

N
∑

m=1

P
[

K
1
m at t | B

]

∑

x∈K
1
m

y/∈K
1
m

βxy dt · P [B] dB

= pc11 (t)−
N
∑

m=1

∫

B

∑

x∈K
1
m

y/∈K
1
m

βxy dt · P
[

B | K1
m at t

]

P
[

K
1
m at t

]

dB

= pc11 (t)−
N
∑

m=1

P
[

K
1
m at t

]

E
[

X | K1
m at t

]

dt, (29)

whereX =
∑

x∈K
1
m

y/∈K
1
m

βxy (that is a sum ofN − 1 terms).

Since our network’s inter-contact rates forming the matrix
B are independent and identically distributed (with generic
distributionF (β) : (0,∞) → [0, 1] of meanµβ), the terms
of the sum formingX are distributed according toF (β),
regardless of the specific node combinationK1

m. Hence,
E
[

X | K1
m at t

]

= E [X ] and Eq. (29) becomes:

pc11 (t+ dt) = pc11 (t)− E [X ] dt ·
N
∑

m=1

P
[

K
1
m at t

]

(30)

= pc11 (t)− (N − 1)µβ dt · p
c1
1 (t). (31)

Thus, we obtain as desired:

d

dt
pc11 (t) = −(N − 1)µβp

c1
1 (t) (32)

The remaining two differential equations are obtained by
the same process.

Theorem 2:In the optimal strategy, the data chunk is de-
livered through the cellular network tod seed nodes at time
t = 0, and to the nodes that do not have the content by the
deadlinet = Tc.

Proof: The proof goes by contradiction: we first assume
that in the optimal strategy the data chunk is transmitted to
some mobile node at timet 6= {0, Tc} and then we find an
alternative strategy that provides a better performance.

If the chunk is transmitted to some mobile node att 6=
{0, Tc}, this means thatC 6= {1, . . . , d} and hence there exists
some missing value smaller thancd in C. Indeed, ifC =
{1, . . . , d}, all the first d states are instantaneous states and
the data chunk is transmitted tod nodes at the beginning of
the round.

Let us denote the largest value inC (cd) by k and the
largest value that is missing byk−l. LetDk further denote the
value ofD for the optimal configurationCk = {c1, . . . , cd}
(wherecd = k), Dk−l the value ofD for the configuration
Ck−l = {c1, . . . , cd−1, k − l} andDk+1 the value ofD for
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the configurationCk+1 = {c1, . . . , cd−1, k + 1}.16 In the
following, we show that eitherDk−l or Dk+1, or both, are
smaller thanDk, which contradicts the initial assumption that
the configuration{c1, . . . , cd} is optimal.

If we compare the state probabilities for the configurations
Ck andCk+1, we have that










PCk

i (s) = P
Ck+1

i (s), i < k

PCk

i (s) =
λk+1(s+ λk)

λk(s+ λk+1)
P

Ck+1

i (s), i > k + 1.
(33)

From the above, we have that the following holds fori >
k + 1,

PCk

i (s)− P
Ck+1

i (s) =

(

λk+1

s+ λk+1

−
λk

s+ λk

)

∏

j∈S
Ck
i−1

\k

λj

s+ λj

=
λk+1 − λk

λk+1λk
sP

Cd−1

i (s), (34)

where SCk

i−1 = {1, 2, . . . , i − 1} \ ({1, 2, . . . , i − 1} ∩

{c1, . . . , cd}) and P
Cd−1

i (s) is state i’s probability for the
configurationCd−1 = {c1, . . . , cd−1}.

By doing the inverse Laplace transform of the above, we
have that

pCk

i (t)− p
Ck+1

i (t) =
λk+1 − λk

λkλk+1

dP
Cd−1

i (t)

dt

=
λk+1 − λk

λkλk+1

(

−λiP
Cd−1

i (t) + λi−1P
Cd−1

i−1 (t)
)

.

(35)

Furthermore, we also have

PCk

k+1
(s)− P

Ck+1

k (s) =
λk − λk+1

λk
P

Cd−1

k+1
(s), (36)

and, hence,

pCk

k+1
(t)− p

Ck+1

k (t) =
λk − λk+1

λk
p
Cd−1

k+1
(t). (37)

Combining Eqs. (35) and (37) with Eq. (1), and taking into
account that fori > k+1 it holds thatdi+d∗i = di+1+d∗i+1+1,
we obtain

Dk −Dk+1 = (λk − λk+1)
N−1
∑

i=k+1

1

λkλk+1

p
Cd−1

i (Tc). (38)

Following a similar approach for the configurationsCk and
Ck−l, we obtain

Dk −Dk−l = (λk − λk−l)
N−1
∑

i=k+1

1

λkλk−l
p
Cd−1

i (Tc). (39)

Since it holds that eitherλk −λk−l or λk −λk+1 is greater
than zero, we have that at least one of the two alternative
configurations (Ck+1 or Ck−l) provides aD value smaller
thanCk. This contradicts the assumption that in the optimal
strategy the data chunk is transmitted to some node at time
t 6= {0, Tc}, which proves the theorem.

16Without loss of generality we assume thatcd 6= N , as it can be easily
shown that a configuration withcd = N is not optimal.

Proposition 1: Let us defineGd as the gain resulting from
sending the(d + 1)th chunk of chunk copy at the beginning
of the period (i.e.,Gd = Dd − Dd+1, whereDd+1 andDd

are the values ofD when we deliverd+1 andd copies at the
beginning, respectively). Then,Gd can be computed from the
following equation:

Gd =

N−1
∑

j=d

λj

λd
pdj (Tc)− 1. (40)

Proof: Gd can be expressed as:

Gd =

N−1
∑

j=d

(N − j)
(

pdj (Tc)− pd+1

j (Tc)
)

− 1. (41)

The termpdj (Tc)− pd+1

j (Tc) is calculated as follows. From
Eqs. (5), we have

P d
j (s)− P d+1

j (s) = −
sP d

j (s)

λd
. (42)

Making the inverse Laplace transform of the above forj > d
yields

pdj (Tc)− pd+1

j (Tc) = −
1

λd

dpdj (t)

dt

∣

∣

∣

∣

Tc

= (43)

=
1

λd
(λjp

d
j (Tc)− λj−1p

d
j−1(Tc)).

Note that the above equation also holds forj = d since in
this casepdj−1(t) = 0 and pd+1

j (t) = 0. Combining it with
Eq. (41) leads to

Gd =

N−1
∑

j=d

λj

λd
pdj (Tc)− 1. (44)

Theorem 3:The optimal value ofd is the one that satisfies
Gd = 0.

Proof: As long asGd > 0, we benefit from increasingd,
since by sending one additional chunk at the beginning, we
save more than one chunk at the end. Conversely, ifGd < 0
we do not benefit. It can be seen thatG1 > 0 andGN < 0.
Furthermore, it can also be seen thatGd strictly decreases with
d:

Gd+1 −Gd =

N−1
∑

j=d

λj

λd+1

pd+1

j (Tc)−
λj

λd
pdj (Tc) (45)

=

N−1
∑

j=d

pdj (Tc)λj(λj+1 − λj − (λd+1 − λd))

λdλd+1

< 0.

From the above, it follows that the value ofd that minimizes
D is the one that satisfiesGd = 0, since up to this value
we benefit from increasingd and after this value we stop
benefiting, which proves the theorem.

Theorem 4:The HYPE control system is stable forKp =
0.2 andKi = 0.4/3.4.

Proof: The closed-loop transfer function of our system is

T (z) =
−z(z − 1)HKp − zHKi

z2 + (−HKp − 1)z +H(Kp −Ki)
(46)
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where
H = −2 (47)

A sufficient condition for stability is that the poles of the
above polynomial fall within the unit circle|z| < 1. This can
be ensured by choosing coefficients{a1, a2} of the character-
istic polynomial that belong to the stability triangle [25]:















a2 < 1

a1 < a2 + 1

a1 > −1− a2

(48)

In the transfer function of Eq. (46), the coefficients of
the characteristic polynomial area1 = −HKp − 1 and
a2 = H(Kp − Ki). From Eqs. (24) and (47), we have
HKp = −0.4 and HKi = −0.4/(0.85 · 2), from which
a1 = −0.6 anda2 = −0.16. It can be easily seen that these
{a1, a2} values satisfy Eq. (48), which proves the theorem.
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