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Abstract—Vehicle-to-everything (V2X) is expected to become
one of the main drivers of 5G business in the near future.
Dedicated network slices are envisioned to satisfy the stringent
requirements of advanced V2X services, such as autonomous
driving, aimed at drastically reducing road casualties. However,
as V2X services become more mission-critical, new solutions need
to be devised to guarantee their successful service delivery even
in exceptional situations, e.g. road accidents, congestion, etc. In
this context, we propose π-ROAD, a deep learning framework to
automatically learn regular mobile traffic patterns along roads,
detect non-recurring events and classify them by severity level.
π-ROAD enables operators to proactively instantiate dedicated
Emergency Network Slices (ENS) as needed while re-dimensioning
the existing slices according to their service criticality level. Our
framework is validated by means of real mobile network traces
collected within 400 km of a highway in Europe and augmented
with publicly available information on related road events. Our
results show that π-ROAD successfully detects and classifies non-
recurring road events and reduces up to 30% the impact of ENS
on already running services.

I. INTRODUCTION

Despite the high investment volume in public transportation,
many people daily commute to work with their private vehicles
over major roads around cities. Accordingly, both drivers and
passengers consume and generate a large amount of data along
the road mobile infrastructure for a wide variety of purposes:
navigation systems, car sensors, infotainment but also phone
calls, social media, streaming, etc. Along highly crowded
roads, this may lead to network congestion and, in the worst
case, service disruptions.

In order to avoid these situations, the next generation
of mobile networks (5G) has defined the Network Slicing
concept, which allows infrastructure providers to dynamically
instantiate on-demand customized virtual network instances
with dedicated Service Level Agreements (SLAs). Standard-
ization bodies have defined the overarching architecture [1]
to support such isolated slices, thus fostering research on
dynamic resource orchestration mechanisms based on well-
known technologies such as Network Function Virtualization
(NFV) and Software Defined Networking (SDN) [2], [3].

As 5G gets rolled-out and advanced V2X services deployed,
solutions to protect mission-critical services will become in-
creasingly important. While significant road safety improve-
ments have been introduced in the last decades, road fatalities
are still a major cause of injuries and death worldwide [4].
Thus, guaranteeing public safety along roads is still a major

challenge that requires novel solutions. Due to the combined
effect of high-mobility patterns, traffic volumes and advanced
automotive-related use cases (V2X), mobile network infras-
tructure along roads will face daunting challenges to guarantee
mission critical services in unexpected congestion scenarios. In
this context, Emergency Network Slices (ENS) are expected not
only to improve situation awareness during emergencies but
also to support the provisioning of enhanced communication
schemes, e.g., Ultra-Reliable and Low-latency Communication
(URLLC) for virtual and augmented reality (VR/AR) to first-
responder teams, e.g., ambulances, police, firefighters, that
have to reach the event location and manage emergencies in
a faster and safer manner [5]. As ENS will get top priority,
solutions need to be devised to re-dimension already running
services according to their criticality level. Unexpected road
events progressively cause traffic congestion to nearby areas
and, in turn, saturate the networking resources of adjacent base
stations. If such a propagation effect could be predicted, their
congestion effects could be alleviated by means of proactive
slices resource management.

We take on this challenge and propose Passive Information-
based Resource Orchestration in Automotive Driving scenarios
(π-ROAD) that relies on a deep learning framework to analyze
passive information from real-time mobile network traffic
statistics, learn regular traffic patterns, and accurately detect
anomalous deviations due to unexpected road events.

Our contributions can be summarized as follows: i) we
provide an in-depth analysis of real mobile network traces
and statistics from an operational network along 400 Km
of a major road in Europe, ii) we design a deep learning
model, namely π-ROAD, that applies the well-known concept
of learn-as-you-go, i.e., it accurately detects and localizes
road events and classifies them according to their severity,
iii) we focus on the network orchestration of emergency
scenarios where an Emergency Network Slice (ENS) must
be instantiated according to the type of road event, iv) we
formulate an optimization problem to minimize the impact of
ENSs on already existing slices and v) we validate our model
and assess its capabilities by means of a full dataset of network
monitoring data in realistic scenarios.

The remainder of the paper is structured as follows. Sec-
tion II provides an overview of road dynamics from a mobile
network perspective. Section III details the main building
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Figure 1: Overview of the Italian highway (A4).

blocks of our solution. Leveraging on the output of π-ROAD,
Section IV formulates the ENS problem, whereas Section V
presents an exhaustive simulation campaign to validate our
design principles through real operational data. Section VI
summarizes the related literature and VII concludes the paper.

Privacy issues: The research activity presented in this pa-
per does not violate user’s privacy rights. The dataset contains
only aggregated and anonymous information collected by the
network operator for monitoring purposes.

II. DATA ANALYSIS

We carry out an analysis of the network traffic dynamics
occurring on the vehicular roads.

The considered dataset consists of 6 months of real network
data (February-July 2020) collected from an operational LTE
network deployed alongside the Italian A4 highway shown in
Fig. 1. The highway has a length of approximately 400 km
and is located in the north of Italy, connecting the city of Turin
with Venice, passing through the metropolitan area of Milan.
Along this highway segment, more than 1000 LTE cells,
corresponding to about 200 eNodeBs (eNBs), are deployed
to provide connectivity to the users commuting or traveling
on this path, and to citizens leaving in the proximity of the
highway. Available data exploit local monitoring information
of LTE eNBs including both averaged and aggregated Key
Performance Indicators (KPIs) within a time granularity of 15
minutes.

A. Spatial consideration

Fig. 2 (top) depicts a snapshot of normalized DL and UL
traffic volumes (per single base station, where the approximate
base station location is highlighted in the upper part of the
plot) aggregated over a month. We highlight areas of the
main cities located nearby the A4 roadway. As expected, DL
volumes increase in the proximity of major cities, due to urban
traffic leakage of base stations covering the highway. Addi-
tional traffic peaks can be identified in specific geographical
locations, e.g., intersections between different highways, main
inter-urban roads, or train lines. Generally, these locations
are characterized by a higher density of base stations, which
means that occurrence of any road events in these points
will probably lead to major impact on the mobile network.
Moreover, a large number of mobile terminals characterizes
such locations over time, due to a significantly higher user
mobility. Similarly, UL traffic shows analogous behaviors but
with a limited volume (about 10% of the overall DL traffic).

B. Temporal patterns consideration

Several works in the literature suggest a strong relationship
that correlates end-users mobility patterns with cellular net-
work statistics [6]–[8] in urban environments. In a similar way,
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Figure 2: Aggregated spatial distribution of DL/UL traffic volumes
along the highway (top), with the focus on working day and weekend
signatures for specific highway areas (bottom).

the mobility patterns identified on highways present repetitive
trends following regular working routines. In this respect, we
plot at the bottom of Fig. 2 normalized number of active users
during working days and weekends for different areas of the
highway, in particular two areas around metropolitan cities
as well as two sections of the highway between two main
cities. The signatures are extracted by calculating the median
values of same time periods over several weeks, separately for
working days of the week and weekends, as proposed by [9].

The first and second subplots show that areas around big
industrial cities, such as Milan and Turin, are characterized
by commuting patterns with a presence of mobility peaks
in the morning, noon and evening during the working days,
which are absent on weekends. Conversely, mobility patterns
of users during working and weekend days are comparable
when considering highway segments interconnecting major
cities (third and fourth subplots).

C. Service-based QoS consideration

Different services with heterogeneous requirements might
be seamlessly managed by the mobile network infrastructure.
In real deployments, this is usually achieved by labelling
each traffic flow with a specific QoS Class Identifier (QCI)
to ensure that each traffic bearer [10] is allocated with the
appropriate set of resources to guarantee an affordable Quality
of Service (QoS). In Fig. 3 (left-hand side), we depict the
temporal distribution of the DL volumes differentiated by
QCI traffic types. It can be noticed a dominance of non-
guaranteed bit-rate (NON-GBR) traffic types (QCIs 6 to 9),
mostly related to video-streaming and social media activities,
and almost negligible volumes for guaranteed bit-rate (GBR)
traffic types (QCIs 1 to 4). Note that the satisfaction of service
requirements also depends on the network congestion level
and on the instantaneous channel quality experienced by end-
users, together with the corresponding modulation and coding
scheme (MCS) selected at the eNodeB scheduler. Interestingly,
DL traffic perceives, on average, a lower MCS index with
respect to the UL one (right-hand side of Fig. 3). This is due to
the high end-user mobility and longer data exchange sessions,
which suffer from a wider communication distance along the
path [11].
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Figure 3: Temporal distribution of different traffic types volumes.

D. Road events consideration

The considered dataset takes into account monitoring infor-
mation from the mobile network infrastructure, but it lacks
of information related to vehicular traffic and unexpected
congestions/events that affect its dynamic. To fill this gap
and help us to accurately relate network traffic dynamics
with road events, we rely on publicly available information
coming from heterogeneous social media sources like Twitter
notification service of Autostrade per l’Italia1, Google Maps2

and Waze3, which facilitate an exhaustive catalog of real-time
road event information and useful metadata, e.g., timestamp,
exact location and a short description.

After 6 months of data collection, the final dataset includes
about 800 road events,4 as shown in Fig. 4. As expected, road
events mainly occur during morning and evening commuting
periods, and are geographically placed close to main cities,
e.g., Milan and Verona. We will match the information con-
tained in this supplementary dataset with the network geo-
graphical deployment information to assign each road event
with the closest base station and obtain the ground truth of
occurred events, as later detailed in Section III.

E. Event propagation effect

Road events might have a consistent impact on the vehicular
traffic conditions and, in turn, on overall network resource
availability. However, it might be easily confused with com-
mon network traffic outliers and therefore be ignored. Current
network deployments may come to help: the RAN deployment
along the highway has quite a regular pattern and might reveal
implicit information as monitoring data are simultaneously
retrieved from different observation points. In particular, a
road event might affect the end-users activity or drop the
mobility rate gradually for adjacent base stations. We call it
event propagation effect. It usually depends on the severity
of the road event, the day time, the specific location and the
network deployment (e.g., base station density, etc.).

1Online available at: https://twitter.com/trafficoa
2Online available at: https://www.google.com/maps
3Online available at: https://www.waze.com/livemap
4Note that our experimental campaign has been carried out during the

Covid-19 pandemic, when the imposed lockdown limited the overall end-
user mobility in the north of Italy, therefore, reported numbers may be biased
and differ from yearly regular data.
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Figure 4: Spatio-Temporal distribution of road events.

From the auxiliary information contained in our event
dataset, we make a straightforward association between the
location of each event and the closest base station, thereby
identifying the source of the road event in the network. Then,
analyzing the propagation of anomalous traffic patterns onto
nearby cells, we can infer which direction of the highway, or
vehicular traffic flow, has been affected.

An example of this is shown in Fig. 5. The scenario accounts
for a major accident occurred nearby Verona at 9:00 AM. The
red line in each plot represents the regular behaviour of the
corresponding metric, while the blue line depicts the daily
data. After the accident, we can notice a clear deviation from
regular patterns for multiple metrics lasting few hours. The
higher number of users in RRC connected state indicates that
multiple users are actively using mobile network resources,
suggesting the presence of traffic congestions. Similarly, this
affects DL volumes and average Physical Resource Block
(PRB) utilization. Moreover, a higher number of affected base
stations on the east side suggests that the accident occurred in
east-west direction (Venice-Turin). Given the high variability
and intrinsic characteristic of each monitoring metric, an
accurate anomalous pattern characterization would involve
time, space and metric-specific considerations. Therefore, road
events can hardly be detected by simple anomaly detection
algorithms, e.g., those based on outlier detection that may
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Figure 5: Event propagation on nearby base stations in both direc-
tions for selected metrics.



run on a single base station. This motivates us to investigate
advanced deep learning solutions capable of dealing with such
multi-dimensional information matrix while keeping a global
view of the system.

III. π-ROAD DESIGN AND MODEL FORMULATION

Hereafter, we introduce the design of π-ROAD, a deep
learning-based framework to detect road events. An overview
of the model architecture is depicted in Fig. 6. The over-
all solution requires two different stages to deal with road
event predictions: i) an autoencoder-based approach consisting
of Long Short-Term Memory Recurrent Neural Networks
(LSTM) layers to detect anomalies within highly dynamic and
heterogeneous time patterns and ii) a Deep-Learning approach
to approximate complex functions, e.g., those that relate road
events occurrences with temporal and spatial distributions of
anomalies detected in adjacent base stations. The overall 6
months dataset has been splitted according to a 60/20/20 ratio
for the purposes of training, validation and testing procedures,
respectively.

A. Input of π-ROAD

Let us consider a time slotted system whereby time is
divided into time intervals t = {1, . . . , T }, and defineN as the
set of base stations deployed along the highway. As detailed in
Section II, each base station n ∈ N gathers information about
a multitude of heterogeneous network statistics, defined asM,
which include, among the others, PRB utilization, physical
channel quality information, traffic volumes, X2/S1 hand-over
statistics, etc. In our experiments we consider 25 different
monitoring metrics.

Let xnm(t) be the time series describing the m-th monitoring
metric observed under the base station n at the time t. As
suggested in [12], an accurate organization of the input traces
helps enhancing deep learning models performances. In light
of this, for all metrics m ∈ M and base stations n ∈ N , we
collect the xnm(t) traces and order them by preserving their
spatial location (from Turin to Venice) in a matrix Xm(t) with
dimensions N ×L, representing a metric-specific snapshot of
the network, where N is the total number of base stations, and
L is the number of monitoring samples within the observation
period (or lookback time window), fixed to 4 hours throughout
our experiments. The input matrices Xm(t) are normalized
with respect to maximum values of each m in the training
dataset.

B. LSTM-based anomaly detection

The possibility to detect changes in traffic conditions is
subject to the capabilities of our model to correctly identify
irregular statistics from the monitoring samples collected along
the highway. Given the multi-dimensionality of our dataset, we
build an autoencoder Am for every collected metric thereby
allowing for better scalability. Autoencoders imply the setup
of an encoding-decoding architecture. The encoding part, com-
monly implemented as feed-forward neural networks, provides
a compressed representation of the input data to subsequent
layers [13]. The decoding phase follows the same steps over

a symmetric architecture. Analytically, the two phases applied
to the input metric Xm can be described as follows:

hm(Xm(t)) = η(W η
mXm(t) + bηm), (1)

X̂m(t) = δ(W δ
mhm(Xm(t)) + bδm), (2)

where η and δ are the encoding and decoding functions with
their corresponding weights W η

m and W δ
m, bηm and bδm are bias

vectors, and hm(Xm(t)) and X̂m(t) are the compressed input
and the reconstructed output sequences, respectively.

The performance of autoencoders, defined as their capability
to reconstruct the input sequence, depends on variability and
complexity of data provided at the input. Differently, in our
work we exploit autoencoders for anomaly detection [14]
instead of simple dimensionality reduction.

The data analysis performed in Section II suggests the
adoption of deep learning techniques able to deal with the
spatio-temporal characteristics of mobile traces. For this rea-
son, we implement our encoder-decoder architecture by means
of Long Short-Term Memory Recurrent Neural Networks
(LSTM-RNNs). Each autoencoder Am accounts for 4 LSTM
layers, two for each phase. LSTM is a type of RNN archi-
tecture that has proven its value when dealing with repetitive
patterns and unstructured time series, while solving a problem
of vanishing gradient for long-term dependencies present in
other RNNs [15]. LSTMs can be represented as a chain of G
modules, or cells, each one applying a set of operations to the
input data. In our case, the two LSTM layers are composed
by 128 and 64 cells, respectively [16].

The output of each cell g ∈ G, also known as cell state, is
transferred to the subsequent cell in a recursive manner. The
possibility of handling long-term trends in LSTM is provided
by structures, dubbed as gates, which carefully remove or add
information to the cell state. Each cell has three gates, namely,
input Ig , output Og and forget gate Fg , which controls the
amount of information that should be added (or dropped) to the
cell state before transferring it to the next unit [17]. This effect
is achieved combining the influence of different non-linear
activation functions, i.e., σ (sigmoid) and tanh (hyperbolic
tangent function), at each gate. The impact of these functions
on the input data needs to be learned during the training phase
aiming to minimize a loss function [17], which in our case is
the mean squared error (MSE).

To accomplish the anomaly detection task, we make use of
labeled data and train the autoencoders offline exclusively on
eventless snapshots taken from historical data as to capture
the behavior of the system without anomalies. Once trained,
we feed the model with online monitoring traces. Given
that anomalous patterns have not been part of the training
phase, it is expected that the model will exhibit performance
degradation during the reconstruction phase. Simple classifiers
would mark the input snapshot as anomalous if the reconstruc-
tion error exceeds a given threshold. Instead, we derive the
squared error matrix em(t) = ‖Xm(t)− X̂m(t)‖2 from each
autoencoder Am and combine the individual error matrices
into a 3D tensor e(t) = {e1(t), em(t), . . . , eM (t)} which is
passed to the second stage of our model.
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Figure 6: π-ROAD model architecture

C. Road Event Localization

The function linking anomalies detected by the first stage
of our model with the occurrence of road events along the
highway is unknown and hard to be characterized due to the
multitude of system-related and external variables affecting the
entire detection process. The simple detection of anomalies
in monitoring statistics does not imply the occurrence of
an emergency, as uncorrelated events—like hardware failures
and/or unexpected traffic peaks—may trigger alerts leading to
erroneous estimations. For this reason in the following, we
exploit the information described in Section II-D as ground-
truth to train a Convolutional Neural Network (CNN)-based
model that captures the spatio-temporal correlation of different
anomalies and maps them into geographical information [18].
Our design choice is further motivated by the fact that in
case of road events, as shown in Fig. 5, affected base stations
present significant levels of correlation between each other,
which further improves the learning task.

More in details, the second stage of π-ROAD consists of
two stacked 3D-CNN layers and a final Multi-Layer Percep-
tron (MLP) fully connected layer. In order to exploit local
correlation from nearby base stations, each neuron of the 3D-
CNN layers has a limited receptive field, or kernel, whose
size determines its observation area. For a given input tensor,
convolutions with 3D kernels are iteratively applied to provide
the subsequent layers with a compressed representation of the
input information.

Through extensive hyper-parameters optimization, we used
two 3D-CNN layers with filter sizes of 32 and 16 neurons,
respectively, and corresponding convolutional kernel sizes of
(3, 3, 3) and (3, 3, 3) [19]. Each neuron of the CNN runs a
filter H(

∑
t e(t) ∗ k(t) + b), where e(t) is the input tensor at

time t, k(t) is the kernel filter, ∗ is the convolution operator, b
is a bias, and H(·) is a non-linear activation function, in our
case Rectified Linear Unit (ReLU) [20].

In order to map the encoded representation of the anomalies
into geographical information about the emergency, we make
use of a final Multi-Layer Perceptron layer. MLP is a class of
neural networks with fully-connected neurons among layers
which has the capabilities to approximate, through supervised
learning, the function that relates the input with the output.
In our case, we are interested in the function that links the
encoded spatio-temporal anomalies of multiple metrics and
different base stations with the exact event location. The
MLP classifier consists of three layers with 512, 256 and
220 neurons, respectively, where the output layer matches

the number of base stations [21]. To regularize the output
and reduce over-fitting, we introduce a dropout rate of 0.2.
Overall, the second stage of the model is trained using Adam
optimizer with learning rate 10−4, and adopting cross-entropy
as loss function over 150 training epochs. Due to high system
variability caused by user social behaviors and external causes
affecting it (e.g., weather conditions), it clearly rises the need
to design a model capable of adapting to new (anomalous)
patterns. Therefore, we ensure that the model is retrained as
soon as new observations are made available.

D. Road Event Classification

Upon detection, it is important to classify the magnitude
of each event to promptly alert first aid responders and, if
necessary, identify the set of networking requirements to be
allocated for an emergency slice setup. We rely on the impact
of the propagation effect over the set of base stations near to
the road event to provide an empirical classification. Let us
introduce Ñ ⊂ N as the set of base stations affected by the
road event. Due to the irregular density that characterizes the
Radio Access Network (RAN) deployment along the highway,
we argue that a simple road event classification based on
the cardinality of Ñ would not be accurate, as road events
occurring in the proximity of main cities would involve a
wider number of base stations than those occurring in rural
areas. Therefore, we define our classification metric µ as Ñ

ψ ,
where Ñ is the cardinality of Ñ , and ψ is the number of
base stations deployed in the area within a radius of 10 km
surrounding the road event. We empirically select 10 km as
this value represents the longest vehicular queue registered
in our event dataset. Clearly, ψ should be re-dimensioned to
generalize our findings within other network topologies.

Finally, we differentiate among three different categories
of events: Light, Moderate, and Severe. The event duration of
each category reflects the most common scenarios contained in
our real dataset, while networking throughput requirements are
meant to support the provisioning of Augmented and Virtual
Reality (AR/VR) streaming in mission critical scenarios [22].
The details about each road event class and corresponding
ENS requirements are summarized in Table I.

Table I: Event characterization and ENS Requirements.

Event category Θ - Time Duration NS Requirements µ Value
Light 20min 10Mbps (0, 1]

Moderate 40min 15Mbps (1, 2]
Severe 60min 25Mbps ≥ 2
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Figure 7: ROC and PR diagrams with indicated AuC and AuPRC
scores for different anomaly detection and classification approaches.

E. Performance Comparison and Practical Considerations

Hereafter, we compare the performance of π-ROAD against
state-of-the-art models trained to perform similar anomaly
detection and classification tasks, highlighting each model
drawback (compared to our solution) through practical con-
siderations. Benchmarks include a simple threshold-based
autoencoder classifier (AE) [16], and a more advanced 3D-
CNN-based classifier [19], [21]. Fig. 7 resumes the overall
performances using Receiver Operating Characteristics (ROC)
and Precision-Recall (PR) metrics. On the left-hand side,
the ROC metric provides a compact representation of the
capabilities of the model to deal with the trade-off between
True Positive Rate (TPR) and False Positive Rate (FPR). On
the right-hand side, the PR curve states the performance of a
classifier in terms of Precision and Recall, where Precision is
a measure of result relevancy, and Recall is a measure of how
many truly relevant results are returned by the classifier. To
ease the comparison, we also quantify the Area under the ROC
Curve (AuC) and Area under the PR Curve (AuPRC). The
unsupervised approach adopted in AE requires the definition
of a-priori thresholds to mark anomalous patterns from the
reconstruction errors. Clearly, the definition of these settings
depends on the intrinsic variability of the traces in input, and
requires considerations over the statistics of each feature. This
approach hardly scales when considering multiple heteroge-
neous metrics, as in our case. Despite accurate tuning of the
parameters, it clearly appears how this simple approach fails
to reveal the majority of events, achieving the lowest precision
score. This further emphasizes how detection schemes based
on simple threshold/outlier detection are not enough to address
the scenario considered in our work. Conversely, the 3D-
CNN classifier adopts a supervised approach, which prevents
from specifying user-defined thresholds for decision-making.
The resulting ROC and PR curves show better performances
when compared against the baseline AE approach. This result
can be explained through the ability of 3D-CNN network to
capture spatio-temporal correlations between different network
measurements [23]. However, when Recall value increases
over a certain level (i.e., moving from left to right on the
PR diagram), the Precision score drops drastically, suggesting
poor performances when differentiating among different types
of anomalies. In other words, the model detects only some
types of anomalies, e.g., those deriving from major events with

very strong impact on monitoring traces, and fails to generalize
over probably smaller ones. Conversely, π-ROAD outperforms
the two stand-alone approaches in both ROC and PR metrics.
The advantage deriving from the two-stage approach adopted
by π-ROAD is two-fold i) the initial anomaly detection task
performed by first stage of the model, together with an
accurate input organization, facilitates the learning task of the
3D-CNN layer and ii) the capabilities of the 3D-CNNs to deal
with bare reconstruction errors removes the need to provision
user-defined thresholds which may bias the final results.

IV. ENS ORCHESTRATION

The outcome of π-ROAD can be used to tackle a variety
of public safety issues along the highway. For example, in
case of road accidents, it is important to enable dynamic RAN
resource allocation in order to provide first responder teams
with enough communication capabilities, regardless of active
user sessions or services. To this aim, in what follows we
introduce our formulation to address the Emergency Network
Slice (ENS) orchestration problem.

Radio Access Network. Let us consider a RAN deployment
with network slicing support covering the area surrounding the
highway and comprising a set of base stations N . Each base
station n ∈ N is characterized by a capacity Cn, defined as
the sum of its available physical resource blocks (PRBs). As
result of the road event localization process executed by π-
ROAD and described in Section III-C, we identify the subset
of base stations Ñ ⊂ N that will host the emergency slice.

Active slice services. Let us assume a set of network slices
S supporting V2X services, being already installed and active
on the considered RAN deployment, whereas let us mark
s = 0 the Emergency Network Slice (ENS) to be temporarily
installed. We assume each V2X slice s ∈ S described by
means of a predefined network slice template that suggests
slice requirements in terms of throughput ∆s, and latency Λs.
Typical values for V2X services are shown in Table II.

A. Problem design

In real scenarios, when setting up an emergency slice, ad-
vanced orchestration operations are required to still guarantee
service level agreements (SLAs) of active slices. Assuming
that an admission control process has been executed to ac-
cept and install V2X slices on the network with the aim
of maximizing the resource efficiency (while still honouring
expected service requirements), it might appear challenging
to add on top of active slices an additional high-priority
service, such as ENS. However, an efficient admission control
will accommodate slices with heterogeneous requirements to
compensate unexpected slice behaviors or traffic peaks [27].
Analytically, we assume that predefined SLAs include for each
slice s ∈ S and base station n ∈ N a minimum number of

Table II: V2X Slice requirements (c.f. [24]–[26])

V2X category Latency Data rate Reliability
Autonomous driving 10ms 10Mbps 99.999%
Tele-operated driving 20ms 25Mbps Sensor Data Streaming 99.999%

Vehicular Internet/Infotainment > 100ms 15Mbps Video Streaming Not Specified
Road Safety 100ms 1Mbps 99%



reserved PRBs, namely Q(t)
n,s

5. Without loss of generality, we
assume that the overall resource availability is assigned to the
set of running slices. In addition, we translate the slice latency
requirements Λs into a tolerance value λs that defines the
maximum number of time intervals packets shall wait into the
queue before being served, or dropped due to lack of resource
availability within the latency requirements. Note that if all
running V2X slices have high priority, i.e., very low delay
tolerance, it might be infeasible to install the ENS without
impairing other active services. ENS parameters depend on the
severity of the emergency road event which can be obtained as
output of a π-ROAD execution. We resume the corresponding
settings in Table I, in light of the discussions of Section III-D.
We define Θ as the envisioned emergency time duration, and
assume, for each ENS to be deployed, a fixed amount of
PRBs allocation Q(t)

n,0,∀t ∈ {0, · · · ,Θ} and the lowest delay
tolerance λ0 = 1. If not properly scheduled, the additional
ENS may lead in the worst case to resource deficit and service
disruption in one or multiple base stations. Therefore, we aim
at minimizing the instantaneous resource deficit π(t)

n , while
still guaranteeing defined SLAs for other active running slices.
Our problem can be formulated as follows:

Problem 1 (π-Orchestrator).

minimize
∑
n∈Ñ

∑
t∈T

π(t)
n

subject to
∑
s

z(t)
n,s ≤ Cn + π(t)

n , ∀n ∈ Ñ , t ∈ T ;

Θ∑
t=0

Q(t)
n,s − z(t)

n,s ≤
Θ+λs∑
t=Θ+1

Q(t)
n,s, ∀s ∈ S, n ∈ Ñ ;

z
(t)
n,0 = Q

(t)
n,0; ∀n ∈ Ñ , t ∈ T ;

z(t)
n,s ∈ N+, ∀n ∈ Ñ , s ∈ S, t ∈ T ;

π(t)
n ∈ N+, ∀ ∈ Ñ , t ∈ T .

where (integer) decision variables are π(t)
n and z(t)

n,s indicating
the number of PRBs to be assigned to slice s on base station
n at time interval t. Note that z(t)

n,0 = Q
(t)
n,0 is due to the

highest priority assigned to the ENS (s = 0). The first set of
constraints introduces flexibility into the problem by adding a
non-zero fictitious value (i.e., the resource deficit πn) to avoid
infeasible solutions. The second set of constraints specify that
the slice resource reservation must be performed fulfilling the
slice delay tolerance, i.e., waiting traffic still in the queue must
be scheduled within λs time slots. We run Problem 1 for a set
of time slots T that includes the time window Θ required
by the ENS. Problem 1 is an Integer Linear Programming
(ILP), which can be efficiently approximated by means of
relaxation techniques (e.g., [30]), and commercial solvers to
provide near-optimal results 6.

5When SLAs disclose information on expected throughput or user rate, the
amount of required PRBs could be dynamically obtained by monitoring the
traffic demand of the different slices. For further details, we refer the reader
to [28], [29].

6The implementation of the problem has been carried out using the
framework of IBM ILOG CPLEX and its Python API.

Proposition 1. Problem 1 is NP-Hard and difficult to approx-
imate within N1−ε, for ε > 0.

Proof: The NP-Hardness proof goes by reduction. Prob-
lem 1 clearly belongs to the NP problems. Let us consider
an instance of a bin packing problem (BPP) with arbitrary
constants a and B, and binary decision variables xij and yj ,
where I and J are the sets of items and bins, respectively [31].

Problem 2 (BPP).

minimize
∑
j

yj

subject to
∑
i

axij ≤ Byj , ∀j ∈ J ;∑
j

xij ≤ 1, ∀i ∈ I.

If we consider N = 1 base station, and zn,s, πn as binary
decision variables, Problem 1 reduces to a BPP that shows
that for all ε > 0, packing items within the minimum number
of bins within N1−ε is NP-hard [31]. Since such a problem
is trivial compared to our original Problem 1—that includes
a number of base stations N > 1 and integer decisions
variables—this result is rather strong.

B. V2X traffic scheduling

The instantaneous resource deficit
∑
n∈Ñ π

(t)
n depends on

the severity of the detected road event and, in turn, on the
specific ENS resource reservation and time duration settings.
Therefore, Problem 1 considers the worst case scenario, i.e.,
when each active slice fully utilizes reserved resources. How-
ever, as shown in Section II, network congestions rarely occur
outside the commuting time periods and some of reserved
network resources may be underutilized. So, the impact of the
ENS on the system can be further mitigated relaxing the fixed
PRB allocation scheme envisioned to assure slice isolation at
RAN scheduling level [32], [33]. Specifically, if a network
slice is underutilized, other slices with pending traffic can
use some of its network resources (PRBs) 7. This allows us
to devise a practical algorithm that reduces the overall slice
resource deficit. In particular, the algorithm sorts slice traffic
requests based on the slice priority (or traffic delay tolerance).
Slices with higher priority will use assigned PRBs as per the
solution of Problem 1 (z(t)

n,s) within time interval t to serve
incoming traffic requests. Once all requests have been served,
remaining slice PRBs (z(t)

n,s > 0) are used to serve traffic
requests of the next slice in the priority-ranked list. When
all PRBs are used (

∑
s z

(t)
n,s = 0), the algorithm proceeds

to the next time interval t keeping unserved traffic requests
in the slice queues. If slice traffic requests are not served
within the slice delay tolerance λs, these are dropped. The
resulting resource deficit is further minimized as the RAN slice
scheduler efficiently assign resources to slices with pending
traffic. Results are shown and discussed in Section V-B.

7While this concept may fail to comply with the network slice isolation
principle, we assume that the isolation is still guaranteed at higher (abstracted)
scheduling layers [32].



V. π-ROAD PERFORMANCE EVALUATION

In the following, we investigate the performance of π-
ROAD while detecting road events, and use this information
to assess our solution’s capabilities in orchestrating radio re-
sources in case of road accidents and realistic traffic conditions
involving different types of V2X network slices.

A. Localization of the road event
In order to evaluate event localization performances, we

provide as input the test set of monitoring samples taken from
our dataset. In Fig. 8, we summarize the results, focusing on
the set of base stations and a representative time period. Each
point on the map represents a pair of base station and time
interval, and its color indicates the detected probability of
event occurrence given the monitoring information. Circular
markers on the same map highlight the ground-truth location
of road accidents. From the picture it can be noticed how π-
ROAD detects most of the events, not only revealing their
temporal duration (x-axis), but also suggesting how much the
propagation effect influences adjacent base stations (y-axis).
Interestingly, the heatmap also reveals some cases in which
π-ROAD detects the occurrence of events before online noti-
fication services and social media platforms. For visualization
purposes, at the top of the figure we highlight two geographical
areas of the highway covering impacted base stations in two
different event occurrences happening at time t77 and t84,
respectively. In the first case, π-ROAD classifies the road
event as Light since only two base stations reported anomalous
statistics. In the second case, given the wider number of
affected eNodeBs, the event is classified as Moderate. Finally,
few events are not detected. Either this can be due to very
limited impact of such events on the monitoring traces or, they
may be approximated with patterns that are unknown to the
model. In the latter case, we expect that similar events would
be detected in the future as the model follows the learn-as-
you-go approach to continuously train with the latest data.

B. Resource Orchestration
Hereafter, we test our ENS orchestration solution exploiting

π-ROAD’s outputs and the realistic monitoring information
contained in our dataset. We consider a 4-slices network
scenario, including two enhanced Mobile Broadband (eM-
BBs) slices dedicated to streaming and infotainment services
(with high delay tolerance), and two Ultra-reliable low-latency
communication (URLLC) slices dedicated to Autonomous
and Tele-operated driving, with corresponding networking
requirements as detailed in Table II. We assume that DL
slice traffic volumes are generated under the reference set of
base stations in the considered event period, according to the
specific service QCI and corresponding traces as depicted in
Fig. 3. In particular, eMBB slices are mapped to QCIs traces
7 and 8, while URLLCs to QCIs 1 and 6, respectively.

Intuitively, the impact of an ENS installation over the radio
access network depends, among the others, by the networking
capacity deployed in the area of the road event, instantaneous
traffic demands, slice requirements, and user density. In Fig. 9a
(top) we provide a quantitative measure in case of different
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Figure 8: Example of road event detection and localization using π-
ROAD model along the highway within one day, compared against
the event ground-truth information.

road event types and corresponding duration. We consider
channel conditions as perceived by the base station during
the event, thereby limiting the base station capacity (due to
lower assigned MCS) when compared to the ideal scenario.
The results of each category are averaged over 10 road event
occurrences taken from our real dataset. It can be noticed
that eMBB slices unveil worst performance (w.r.t. URLLC)
due to their higher throughput requirements and lower slice
priority (i.e., higher delay tolerance). However, an advanced
slice orchestration solution may alleviate this issue.

Fig. 9a (bottom) focuses on the Moderate road events
evaluating the impact of different slice types (delay tolerance
parameters λs) with a fixed decision interval t duration of
100 ms [34]. Specifically, π-Orchestrator may suggest different
solutions with corresponding slice configurations that translate
into variable slice scheduling opportunities per decision inter-
val. Therefore, we evaluate the Cumulative Distribution Func-
tions (CDFs) of traffic latency considering different scheduling
opportunities. Despite the resource deficit introduced by the
ENS, the average slice latency improves when the number
of scheduling opportunities increases. Fig. 9b depicts the
temporal evolution of the overall effects caused by the ENS
slice setup at transmission time interval (TTI) level. All traffic
traces, MCS and channel quality values are generated with a
millisecond granularity according to their temporal evolution
and statistical distributions resulting from our monitoring
dataset. The initial scenario accounts for a fixed resource
allocation scheme (without any ENS running) which allows
to satisfy all the different slice requirements, as expected in
normal traffic conditions thanks to the adoption of calibrated
admission and control algorithms, e.g. [28]. In particular,
among the 4 slices populating the system, eMBB slices have a
fixed quota of 30% of available resources while URLLCs have
20%, respectively. After 10 seconds, an ENS is instantiated.
Its higher priority implies the execution of the π-Orchestrator
to minimize service disruption. From the upper plot, it can
be noticed how our solution reduces the quota of resources
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Figure 9: Performance evaluation of a 4-slices scenario when an ENS is installed.

assigned to non-delay sensitive services which, unavoidably,
suffer from a resource deficit (highlighted in red). However,
in emergency scenarios the RAN slice scheduler may assign
unused reserved resources to active slices with traffic pending
to be served, further reducing the resource deficit and, in turn,
the SLA violation of certain slices. In the lower plot, we depict
the overall traffic potentially violating the SLAs with a red
dashed line, whereas the traffic actually exceeding it with a
black continuous line. Results show how scheduling relaxation
would help in reducing the SLA violations up to 30%. Clearly,
this result assumes that none of the resources allocated for
ENSs can be consumed by other slices, even in absence of
emergency traffic.

VI. RELATED WORK

The ever-increasing vehicular traffic fosters the need to
deeply understand the complex relationship that regulates
mobility patterns which, in turn, affects mobile network op-
erational conditions [35], [36]. From the one side, this effort
requires constant monitoring of the communication infrastruc-
ture. From the other side, the highly heterogeneous set of
monitoring KPIs demands for advanced solutions to automate
the early detection of anomalous conditions. The authors
of [37] initially addressed this scenario proposing a Bayesian
network working on a set of discrete metrics collected from an
operational UMTS infrastructure. Similarly, the work of [38]
focused on a large-scale cellular network scenario, where
traffic traces are modeled into regular and random components.
Their decomposition approach well suits predictable patterns,
but fails in highly variable scenarios. More recently, state-of-
the-art solutions start combining monitoring traces and hetero-
geneous contextual information to improve the effectiveness
of model predictions and decisions. In [27], [29] the authors
leverage spatio-temporal characteristics of mobile traces to
predict resource utilization in the context of network slicing.

Most of the works in the literature address the urban
environment and aims to mitigate the cause of traffic con-

gestions by predicting traffic flows and offloading strategies
to alternative paths [39], while less studies targeted the high-
way scenario. In [40] the authors present a spatio-temporal
analysis of highways travel patterns exploiting per-vehicle
data records collected by a centralized authority in China.
Given the fine granularity of per-vehicle information, there
is lack of a discussion about anomaly detection from a mobile
network perspective. Additionally, note that the majority of
the related works presented above tackle the vehicular traffic
prediction by means of active systems, e.g., GPS location
exchange, or networks of sensors deployed along the road,
which clearly ease the prediction task but also increases the
volume of information generated along the process. To the
best of our knowledge, this is the first work considering the
prediction of road events and their impact on the mobile
network infrastructure exclusively accounting for aggregated
and passive RAN monitoring samples.

VII. CONCLUSIONS

In this paper, we presented π-ROAD, a deep learning-based
solution for the analysis and detection of road events over
the highway. The model accounts for two complementary
stages i) an autoencoder-based stage to identify anomalous
patterns in the temporal evolution of operational mobile
network data, and ii) a 3D-CNN-based stage to overcome
simple threshold detection schemes and automatically learn
the relationship that links multiple metric-specific anomalies
to road event occurrences. The output of π-ROAD may be
used in a multitude of emergency scenarios. We focused on the
design and validation of a slice orchestration solution dealing
with the setup of Emergency Network Slice (ENS) in V2X
scenarios. Considering real mobile traffic distributions from a
major highway in Italy, our results show that the information
provided by π-ROAD can significantly reduce, up to 30%, the
impact of Emergency Network Slice setup, also decreasing
the probability of service disruption on other running network
slices.



VIII. ACKNOWLEDGMENTS

The work of Politecnico di Milano was supported by the
H2020 ITN Project Spotlight (Grant Agreement No. 722788).
The work of NEC Laboratories Europe was supported by the
H2020 MonB5G Project (Grant Agreement No. 871780) and
by the H2020 Carmen Project (Grant Agreement No. 825012).

REFERENCES

[1] Third Generation Partnership Project (3GPP), “Technical Specification
Group Services and System Aspects; System architecture for the 5G
System (Rel. 16),” 3GPP TS 23.501 V16.5.1, Aug. 2020.

[2] P. Rost et al., “Network Slicing to Enable Scalability and Flexibility in
5G Mobile Networks,” IEEE Communications Magazine, vol. 55, no. 5,
pp. 72–79, May 2017.

[3] J. Ordonez-Lucena, P. Ameigeiras, D. Lopez, J. J. Ramos-Munoz,
J. Lorca, and J. Folgueira, “Network Slicing for 5G with SDN/NFV:
Concepts, Architectures, and Challenges,” IEEE Communications Mag-
azine, vol. 55, no. 5, pp. 80–87, May 2017.

[4] W. H. Organization, Jul. 2020. [Online]. Available: {https://www.who.
int/gho/road safety/mortality/en/}

[5] J. W. K. Donoughe and H. Gabler, “Analysis of Firetruck Crashes
and Associated Firefighter Injuries in the United States,” vol. 56,
no. 1. Association for the Advancement of Automotive Medicine, Oct.
2012, pp. 69–76, Available: https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC3503424/.

[6] J. Wang, J. Tang, Z. Xu, Y. Wang, G. Xue, X. Zhang, and D. Yang,
“Spatiotemporal Modeling and Prediction in Cellular Networks: A
Big Data Enabled Deep Learning Approach,” in IEEE Conference on
Computer Communications - INFOCOM’17, May 2017.

[7] C. Marquez, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Pérez,
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