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Abstract—As 5G deployments start to roll-out, indoor solutions
are increasingly pressed towards delivering a similar user experi-
ence. Wi-Fi is the predominant technology of choice indoors and
major vendors started addressing this need by incorporating the
mmWave band to their products. In the near future, mmWave
devices are expected to become pervasive, opening up new
business opportunities to exploit their unique properties.

In this paper, we present a novel PASsive Intrusion Detection
system, namely PASID, leveraging on already deployed indoor
mmWave communication systems. PASID is a software module
that runs in off-the-shelf mmWave devices. It automatically
models indoor environments in a passive manner by exploiting
regular beamforming alignment procedures and detects intruders
with a high accuracy. We model this problem analytically and
show that for dynamic environments machine learning techniques
are a cost-efficient solution to avoid false positives. PASID
has been implemented in commercial off-the-shelf devices and
deployed in an office environment for validation purposes. Our
results show its intruder detection effectiveness (∼ 99% accuracy)
and localization potential (∼ 2 meters range) together with its
negligible energy increase cost (∼ 2%).

I. INTRODUCTION

5G is finally here. Mobile operators around the world are
racing toward rolling out commercial 5G services in their
networks, and as the 5G momentum continues to build, more
commercial networks will come online in the next months
and years worldwide. With more than 80% of mobile data
traffic originating or terminating indoors, service providers
aiming at keeping pace with 5G are increasingly considering
the mmWave technology for indoor locations as the solution
to bring current WiFi products to the next level. mmWave can
elevate user experiences to new heights by bringing multi-
Gigabit/s speeds, ultra-low latency experiences, and virtually
unlimited capacity to a wide range of devices such as smart-
phones, tablets, AR/VR (augmented/virtual reality) headsets,
and always-connected laptops. Moreover, since most offices
have Wi-Fi connectivity for computers and other enterprise
devices, mmWave networks can realize the vision of the
“mobile office of the future”, bringing enhanced performance,
convenience, security, and user experiences not possible with
today’s connectivity solutions.

On the standardization side, the IEEE 802.11ad working
group, also known as WiGig, already defined a solution
delivering high-speed communication capabilities for devices
operating in the mmWave frequency bands. Based on this
standard, commercial off-the-shelf products are available to-
day. The future IEEE 802.11ay [1] standard, currently under

development, is being designed to provide up to 30Gbit/s of
indoor capacity within 30 meters [2].

The high data rates offered by mmWave systems compared
to classical sub-6GHz Wi-Fi ones come at the price of much
worse propagation properties. Attenuation is very strong at
mmWave frequencies and thus, mmWave devices require a
larger number of antenna elements so as to provide high spatial
processing gains that compensate for experienced pathloss [3].
These multiple antenna elements enable mmWave transmitters
to electronically steer the radiation pattern providing spatial
diversity to the communication channel [4]. Moreover, strong
multi-path features and high obstacle blockage sensitivity
make mmWave communications very sensible to propagation
environment changes.

In this paper we present the PASID solution (PASsive Intru-
sion Detection) which takes advantage of the unique properties
of mmWave communication channels to, in addition to enable
Gigabit/s data rates, perform indoor intrusion detection in a
passive manner, i.e., without requiring an active connection
to the potential intruder. In particular, mmWaves can easily
pass through common clothing materials and reflect on human
bodies. Such reflected waves result in frequency variations
that reveal discrepancies from expected power measurements.
Thereby, detecting the potential presence of an unexpected
person in an indoor environment. In order to do so, a data
analytics engine ( [5], [6]) can carefully parse the data and
capture mmWave channel variations. Deep neural networks
can then automatically learn the reference channel environ-
ment of a given mmWave indoor deployment and, if an
unexpected channel variation is detected, recognize whether
it is due to the presence of an intruder. Furthermore, the
directional nature of the mmWave signal enables a localization
feature by sounding the channel on different directions and
determining the position of intruders without requiring an
active connection.

The contributions of the work presented here are as follows:
c1. Analytical modeling of mmWave channel variation out-

liers detection by monitoring and analysis of gathered power
measurements.

c2. Distribution similarity process comparing regularly ob-
tained channel monitoring measurements against a reference
environment without intruders.

c3. Design of a deep neural network that continuously keeps
track of real-time channel measurements and triggers an alert
message when an intrusion is detected.
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c4. Localization of intruders within a given indoor reference
channel environment.

c5. Implementation of PASID as a stand-alone software in
off-the-shelf mmWave routers and validation in a real office.

The rest of the paper is organized as follows: Section II
introduces the analytical modeling of the problem. Section III
describes the PASID model we use to build the outlier de-
tection phase and the distribution similarity process. The deep
neural network design is then presented in Section IV followed
by an overview of the testbed implementation details in
Section V. Experimental results are summarized and discussed
in Section VI. Section VII discusses the related work on the
topic. Finally, Section VIII provides our concluding remarks.

II. PASID MODEL DESIGN

In order to detect channel anomalies within an indoor ref-
erence environment, a mmWave channel monitoring phase is
required. In particular, power measurements on an established
mmWave link must be regularly collected and analyzed to
detect unexpected changes. Following the IEEE 802.11ad pro-
tocol guidelines, power measurements are regularly performed
during the beam training phase, i.e., when two mmWave
devices seek for which beam to activate providing the best
channel quality.

Hereafter, we provide the main pillars of the beam training
procedure as defined by the IEEE 802.11ad standard showing
the impact on the passive channel sensing within indoor en-
vironments. This allows to analytically formulate the problem
and thus, to provide a mathematical preliminary solution in
order to successfully detect intruders.

Notation. We denote matrix and vector in bold text. (·)T and
(·)H stand for vector or matrix transposition and Hermitian
transposition, respectively. ||x||2 denotes the L2-norm of a
vector x while tr(x) is the trace of the square matrix x.

A. The beam training procedure in IEEE 802.11ad

IEEE 802.11ad (and its evolution 802.11ay) covers many
relevant aspects to establish and sustain a communication link
between mmWave-enabled devices. To provide the required
beamforming capabilities, such devices are equipped with
electronically steerable antenna arrays controlled by prede-
fined weights vectors included in a codebook that may au-
tomatically activate different transmitting and receiving beam
patterns. A specific codebook must be selected for transmitting
or receiving operations to activate the communication and
establish the connection.

The beam pattern activation is performed by means of a
complex Beam Forming Training phase. During this phase,
the so-called initiator transmits Sector Sweep (SSW) frames
whereas the responder collects power measurements. As soon
as the initiator has probed all available beam patterns by
selecting available weights vectors in the codebook, in turn,
the responder can start the sector sweep procedure letting
the initiator collecting power measurements. This procedure
is activated during the association phase being periodically
repeated to properly adjust the beam selection during the

communication and prevent connection disruptions due to an
unexpected signal drop [7]. The entire procedure allows to
instantaneously obtain a snapshot of the environment by ex-
ploiting the spatial diversity while at the same time considering
the best communication path to establish the connection.

Note that, due to the millimeter waves high frequency,
their propagation is strongly influenced by the environment
itself, including human bodies, walls and even glass objects,
which can seriously hamper the signal propagation [8]. Thus,
the presence of an intruder in the environment can change
the propagation conditions, although it might not completely
obstruct the communication path between a pair of mmWave
nodes. Notably, intruders might have a strong influence on the
propagation environment that translates into relevant changes
in the beam training measurements outcome. Therefore, the
power measurements performed by mmWave devices during
standard operations can be exploited to build a complete sens-
ing map of the propagation environment and promptly capture
unexpected variations. In the next section, we mathematically
leverage on those measurements to detect propagation envi-
ronment changes, and passively sense intrusions in an area.

B. Effects of intrusion on the Beam training Phase

Let us consider a mmWave communication system con-
sisting of multiple mmWave-enabled 802.11ad devices, which
can exchange data while periodically performing the beam
training phase according to the 802.11ad guidelines. Hereafter,
we focus on the effects produced by propagation environment
changes onto the received power measured by those devices.

The short wavelength characterizing mmWave propagation
translates into a quasi-optical propagation behavior. As a
consequence, objects which lie in the propagation environment
can provide communication blockages as well as a large
number of reflected paths that can sustain the communication,
especially in indoor environments. Therefore, mmWave prop-
agation can be assumed to be a multi-path communication
and we can describe the communication channel with a
geometrical model [9], which takes into account the multi-
path profile of the environment as follows:

H =
∑
l∈L

αlaRx(φRx,l)aTx(φTx,l)
H , (1)

wherein L is the set of paths constituting the multi-path profile,
αl is the complex gain of the lth path. aTx and aRx are the
array steering vectors of the transmitting and receiving device
respectively, which account for the physical characteristics of
the arrays, while φTx,l and φRx,l are the angle of departure and
the angle of arrival of the lth path.

Such devices are provided with a default beam codebook
of size P as a set P = (pi) of weighting vectors. Different
weighting vectors identify distinct beam patterns activated by
each device. During the beam training phase, each of the
weighing vectors in the transmitter and receiver codebooks,
namely Ptx and Prx, are sequentially selected and applied to



the steering vector of the devices. We can define the set of
available pairs of beams1 as the following:

B := {(i, j)|pi ∈ Ptx,pj ∈ Prx} . (2)

Let us consider the activation of a given couple of transmitting
and receiving beams (i, j) ∈ B. Thus, we can describe the
overall communication gain provided by (i, j) as follows:

gij = |pH
j Hpi|2, (3)

wherein pi ∈ PTX and pj ∈ PRX are respectively the ith

and the jth weighting vectors defined in the transmitting and
receiving codebooks of the devices.

The received power associated to the beam pair (i, j) ∈ B
can be derived as a function of the overall communication gain
(expressed in dB):

ζij = ΩTX +Gij +Xij , (4)

wherein ΩTX is the transmission power, Gij is the overall
communication gain expressed in dB, and Xij is a random
variable that takes into account the non-ideality of the commu-
nication channel. For the sake of simplifying the system model
discussion, we reasonably assume it as normally distributed2 ,
i.e.,N (0, σij), where σij is the variance calculated as per [10].
As a consequence, given a propagation environment, the power
ζ = (ζij) for each beam pair (i, j) has a multivariate normal
distribution, i.e., ζ ∼ N (µ,Σ) with mean µ ∈ RP and
covariance matrix Σ ∈ SP++ being symmetric positive, and
exhibits a probability density function as the following

p(ζ, µ,Σ) =
1

(2π)P/2|σ|1/2
e−

1
2 (ζ−µ)TΣ−1(ζ−µ), (5)

where

Σ = E[(ζ − µ)(ζ − µ)T ] = E[ζζT ]− µµT . (6)

It is worth pointing out that the activation of different beam
couples provides very different overall communication gains
as different weighting vectors pi are designed to be direc-
tional and therefore to emphasize different communication
directions. This enables the spatial diversity in the power
measurements campaign considering different directions and
covering a 360◦-angle from the device perspective.

As mentioned above, devices are periodically performing
the beam training phase, wherein beam patterns are sequen-
tially activated to retrieve power measurements so as to select
the best beam for sustaining the data transmission. Analyt-
ically, per each beam training phase t, we get a sample of
the random process ζij for each selected beam pair that can
be gathered in the matrix ζt = (ζij). We consider a set of
sequential beam training phases taken in the kth measurement
time window Tk as Sk := {ζt : t ∈ Tk}.

1The activated beam pattern f(θ) is obtained as a function of the angle
θ, f(θ) = pia(θ). However, to avoid clutter both terms beam and weighting
vector are used interchangeably in the rest of the paper.

2This is a reasonable assumption in dense multipath scenarios due to
the large number of contributions. However, this assumption is relaxed in
Section IV where we provide an effective solution for general distributions.

Given the measurement time window Tk and its size Tk =
|Tk|, we can then estimate the expected mean value and
variance of the received power distribution per each couple
(i, j) ∈ B by computing the following two matrices:

Mk = (µ̂ijk ) =
1

Tk

∑
t∈Tk

ζ
(i,j)
t , (7)

Dk = (σ̂ijk ) =

√
1

Tk

∑
t∈Tk

(ζ
(i,j)
t − µ̂ijk )2. (8)

Note that if the measurement time window is large enough
those values well represent the distribution of ζij in the stan-
dard environmental conditions. i.e. no intrusions are detected.

Let us consider an intrusion event that occurs when a person
moves inside the propagation environment. We can draw
the following three observations: i) due to the hydrophobic
millimeter-wave behavior, the presence of an intruder may
completely block some of the paths l ∈ L between the trans-
mitter and the receiver, ii) the flat surfaces that characterize
most of the fixtures in the environment might act as wave
reflectors: the intruder might permanently move them thereby
disrupting some existing path while building new communi-
cation channels, iii) a moving person acting as an intruder
continuously moves around intermittently blocking some of
the communication paths. Such changes in the propagation
environment translate into a tangible multi-path profile change
that reflects the modifications of the received power statistics
both in terms of average and variance. In what follows, we
develop a mathematical solution to detect such changes.

C. The kernel density value

A density estimate based on a non-parametric kernel esti-
mate function [11], namely a ground truth density is performed
in order to accurately detect unexpected data measurements. In
this way, measurement values differing from the ground truth
density are labelled as outliers. However, when no assumptions
are taken about the distribution of the measurements, outlier
detection is only feasible by comparing the estimated density
of a given measurement value to the average density of its
neighbors, namely unsupervised outlier detection method as
shown by LOF [12].

We can define the distribution density q(xt) restricted to a
subset of measurement values taken within measurement time
window Tk as the following

q̃(ζt) =
1

T

∑
ζτ∈Sk

1

h(ζτ )P
K

(
ζt − ζτ
h(ζτ )

)
, (9)

where T = |Tk|, K(·) is a kernel function expressed as a
multivariate Gaussian function with P dimensions, zero mean
and unit standard deviation as follows

K(x) =
1

(2π)P
e−
||x||2

2 , (10)

where h(ζτ ) is the bandwidth function and can be defined as
the following

h(ζt) = hdk(ζt), (11)



where dk(ζt) denotes the distance to the kth nearest neighbor
of measurement ζt. The bandwidth value h indicates the
weight selected for dk(ζt). On the one side, the larger the
bandwidth value h, the more influential are the k nearest
neighbors that are further away. On the other side, the smaller
the value h, the more we focus on k nearest neighboring
measurements. By substituting Eqs. (10)-(11) into Eq. (9), we
can derive the density function as the following

q̃(ζt) =
1

T

∑
ζτ∈Tk

1

2π
P
2 hdk(ζτ )P

e
− rk(ζt,ζτ )2

2hdk(ζτ )2 , (12)

where rk(x, y) is the reachability distance [13] expressed as
rk(x, y) = max(||x−y||2, dk(y)) to prevent the distance from
being very small.

Let us now suppose to have two consecutive sets of mea-
surements Sk and Sk+1 respectively taken in Tk and Tk+1,
and assume that in k + 1 an intrusion occurred while in the
measurement time window Tk a sufficient number 3 of samples
has been retrieved to have a good estimation of the non-
intrusion statistics. Given a beam pair (i, j), it yields that:

ζt∈Tk ∼ N (µk,Σk), ζτ∈Tk+1
∼ N (µk+1,Σk+1), (13)

where Σt is the covariance matrix that automatically adjusts
to the shape of the measurements set within time window Tk.
Using a general Gaussian kernel with such covariance matrix,
it yields

q̃(ζt) =
1

T

∑
ζτ∈Tk

1

2π
P
2 hP |Σt|1/2

e−
rdk(ζ∗

t,ζ
∗
τ )2

2h , (14)

where rdk(x,y) = max(dΣ(x,y)2, dk(y)), dΣ(x,y) =
(x∗ − y∗)T (x∗ − y∗) and x∗ = (ΛT )−1/2V T (x∗ − µ).
Please note that Λ = diag(λ1, . . . , λk) is the diagonal matrix
of eigenvalues and V = [v1, . . . , vk] is the matrix of corre-
sponding eigenvectors of Σt. We can now derive the density
value factor as the following

γ(ζt) =

∑
ζτ∈Tk

q̃(ζτ )
T

ζ̃t + c ·
∑
ζτ∈Tk

q̃(ζτ )
T

. (15)

Then, we can consider as outlier for the beam pair (i, j) ∈ B
any value γ(ζt) ≥ ∆, where ∆ is a detection threshold. This
translates the system behavior into true positive event, i.e.,
TP = Pr (γ(ζt) ≥ ∆) , t ∈ Tk+1, and true negative event,
i.e., TN = Pr (γ(ζt) < ∆) , t ∈ Tk.

Given such probabilities, the detection threshold value ∆
can be optimized so that the system accuracy is maximized.
However, since the received power statistics are not known a
priori and they are strongly dependent on the specific envi-
ronment, the detection threshold must be chosen considering
different environment settings.

III. PASSIVE INTRUSION DETECTION

While the outlier detection process helps to recognize the
next environmental change as described in Section II, we

3While the sufficient number of samples may change depending on the
specific scenario, we consider the minimum number of samples needed to
obtain a 95% of confidence level.

Fig. 1: The state diagram of PASID

need to identify the current status of our system based on
the data collected within a measurement time window Tk in
order to trigger an alert for potential intruders. We define two
main system states: i) intrusion detected and ii) no intrusion
detected, as shown in Fig. 1.

Note that the continuous presence of an intruder within the
environment may conditionally change the overall power mea-
surements, which may exhibit altered distribution parameters
µ and Σ as described in Section II-B. This would result, in
turn, in upcoming power measurements distributed according
to the new distribution statistics revealing no further outliers.
Therefore, our system cannot rely only on the outlier detection
process to determine the current system state as it might
fail while trying to capture diverging behaviors. Instead, we
need to introduce a new system state that accounts for such
an intermediate state, namely Similarity check. This state is
entered as soon as no further variation is retrieved, i.e., when
no power measurement is marked as an outlier.

If no outliers are detected within an entire measurement time
window Tk, the distribution similarity process is executed. In
particular, this process compares the expected mean values
and variances of the received power distribution Mk and
Dk within the previous measurement time window Tk as
defined in Eqs. (7)-(8) in Section II-B against the distribu-
tion parameters of a reference scenario in T0. Note that the
reference measurements distribution strongly depends on the
selected environment and must be taken in advance when the
environment is not occupied by any human presence (labelled
as reference environment in Fig. 1).

We use the RV-coefficient to quantify the similarity between
two matrices [14]. Specifically, we define it between matrices
X and Y as the following

Ψ(X,Y ) =
tr(ΣXY ΣY X)√
tr(Σ2

XX)tr(Σ2
Y Y )

, (16)

where the covariance matrix Σ2
XX = E(XXTXXT ) while

ΣXY = E(XY T ). During the distribution similarity process
we calculate ΨM (Mk,M0) ∈ [0, 1] and ΨD(Dk,D0) ∈
[0, 1]. If ΨM ≥ αM and ΨD ≥ αD, we claim that the
distribution of measurements in Tk is similar to the distribution
of measurements taken during the reference scenario. This
places our system in the “No intrusion detected” state, as
shown in Fig. 1. Otherwise, the intrusion state is entered again.



Fig. 2: Overview of the neural network architecture.

A. Discussion on dynamic settings

Different applied settings might result in different system
behaviors. In a nutshell, we need to take into account the
following aspects while designing our solution: i) a larger
measurement time window Tk might capture better the channel
dynamics and properly recognize the outlier but it might
return a biased set of distribution statistics (Mk and Dk) that
might impair the overall similarity process; ii) αD shall be
chosen lower than αM as the variance is a meaningful feature
that better describes the data distribution, iii) the detection
threshold value ∆ shall be automatically selected as it may
lead to reduce the sensitivity of the system to the possible
intrusions (when set to high values) while triggering often an
alarm (when set to low values) and, iv) we assume the power
measurement statistics as normally distributed which makes
our analysis tractable, deviations on this assumption would
affect our solution effectiveness.

As it can be observed, although the multiple beams exhibit
different distributions showing how the spatial diversity affects
the mmWave communication channels, they can be reasonably
mapped to normal distributions with different variance and
mean values based on the selected transmission beam.

The PASID solution described so far effectively works
for static scenarios where intruders enter an area without
modifying the environment. However, when considering an
intruder considerably changing the structure of the indoor
environment (e.g., moving furniture or introducing new static
objects) the reference environment may significantly change
its power measurements distribution leading to a ping-pong
effect between the “intrusion detected” and “similarity check”
system states. In such a case, even though the room might
have no intruders anymore and no outliers are detected, the
power measurements distribution within the last measurement
interval Tk may differ from the reference scenario in T0. To
overcome this problem and make our PASID solution able to
dynamically learn about room structure changes, we introduce
in the next section a machine-learning module responsible of
updating our reference environment when required.

IV. LEARNING ENVIRONMENTAL CHANGES

To make our PASID solution robust to indoor mmWave
environment changes we design a machine learning-based

solution, which—by means of a training process—is able
to automatically approximate the system model described
in Section III. The advantage of a self-learning approach
versus a parametric model-based solution is multifold: i) the
distribution of the power measurements can radically change
according to the specific deployment environment, thus the
setting parameters have to be properly tuned for each indoor
environment to successfully detect intrusions; ii) the indoor
environment structure can change (e.g., furniture moved), re-
sulting in a new reference environment that must be identified
preventing the system to enter into a deadlock between the
non-intrusion and similarity check states; iii) the multivariate
Gaussian assumption of the power measurements might not
hold if the number of transmission paths is not sufficiently
high or in case of non-linearity of the power measurements.

Thus, in PASID we adopt a Deep Convolutional Neural
Network Classifier architecture as depicted in Fig. 2. For
each time interval k, the set of power measurements Sk
taken within measurement time window Tk is organized as
a matrix Ik ∈ RB×T such that columns of Ik contain the
measurements vector ζt at the time t ∈ T , whereas rows
represent the temporal evolution of each element of ζt within
the measurement time window Tk. The convolutional layer
has a kernel with T × 1 size and it is used to reduce the
dimensionality of the input layer. Given the dimensions of the
kernel, we can write the output of the convolutional layer as
the following:

fk = y (Ik ·w) , (17)

wherein fk = (f
(i,j)
k ) is relative to each beam couple (i, j) ∈

B, y(·) is the relu activation function and w is the set of
weights of the convolutional layer.

The idea behind is to exploit the convolutional layer to
find an ad-hoc weighting vector w, which is able to trans-
late the temporal evolution of ζt into a lower dimensional
feature space that represents the intrusion phenomena and,
at the same time, keeps separated the contributions of each
couple (i, j) ∈ B. The output of the convolutional layer
is a vector with B × 1 size. This vector is fed into a
deep fully connected neural network comprising a 9-neurons
layer followed by a 2-neurons output layer with relu and
softmax activation functions, respectively. Such layers carry
out the classification process. Additionally, the output neurons
provide a score, which represents the conditioned probabilities
Pr(intrusion|Ik) and Pr(intrusion|Ik) by means of the soft-
max activation function. Therefore, the output neuron that
maximizes the score represents the chosen output class in-
ferred by PASID.

A key feature of the presented neural network is that, if the
training set is provided with a sufficiently different number
of indoor scenarios, the convolutional layer can potentially
learn to extract features which are relevant to detect intrusion
events independently on the environment itself. The variety
of the training data affects also the classification part of the
network that is able to generalize the classification process.
This translates into a system which tends to be more portable:



Fig. 3: Deployed testbed in an office environment.

the higher variety of examples in the training set, the shorter
the initial adaptation to the specific area of interest. Clearly, the
perfect portability is an ideal condition, which might depend
on the complexity of the faced scenario.

V. TESTBED IMPLEMENTATION

We envision our solution as a standalone software com-
ponent running on top of off-the-shelf mmWave devices,
including (but not limited to) commercial routers, smart TVs,
connected bulbs or plugs. While an optimal planning in the
device placement process might be required to provide a full
area coverage, we leave this design challenge out of the scope
of the paper due to space concerns. However, we developed
and deployed PASID into into an office testbed to check its
feasibility in real indoor scenarios.

A. Testbed equipment and setup

We assume our testbed composed of four off-the-shelf
802.11ad-compliant Tp-Link Talon AD7200 devices that offer
quasi-full spatial coverage of the considered area. Those
devices are equipped with a 32-elements antenna array. Trans-
mitting and receiving beam patterns are defined in two differ-
ent codebooks consisting of 36 transmitting sector patterns
and one quasi-omnidirectional receiving sector pattern, re-
spectively. The default device firmware does not include an
easy access to the beam training and received power values,
therefore we use the LEDE-ad7200 firmware [15] on such
devices that allows us to retrieve all needed information.
Such a firmware provides several user space interfaces, which
allows to interact with the wil6210 firmware module that fully
controls the IEEE 802.11ad interface. It provides access to
the power measurements performed during the beam training
phase, such as measured Received Signal Strength Indicator
(RSSI) and SNR per each activated beam pattern.

We deploy the 4 mmWave devices in a 4m × 8m office
environment used as the testbed location. We consider two
different device deployment setups. In the first setup, we install
our devices under the ceiling of the office to investigate on
the PASID performance when an intruder does not obstruct
the Line-of-Sight (LOS) path. The latter, instead, includes
mmWave devices placed on the desks and on the room lockers.
This setup is LOS-blockage-prone as the LOS is established at

Fig. 4: Measurement process considering 1 AP and 3 STAs.

human body level and might be considered as a very common
deployment for offices and private houses.

Fig. 3 shows the latter experimental setup with different
devices distributed in the office. Devices are labeled according
to their running configurations, i.e., Access Point (AP) or
Stations (STAs). During our measurement campaigns, we
emulate an intruder irruption inside the area of interest by
considering a real human body, which is moving inside the
office as well as a fictitious human phantom by means of water
filled barrels that accurately emulate the field perturbation
caused by a human body at 60-GHz-irradiation, as indicated
in [16]. Additionally, we divide the floor walkable area in 52
reference squares, each with 50cm× 50cm size to keep track
of the actual intruder position in the room.

B. PASID execution

We build our reference scenario by choosing only one
reference device (i.e., the AP in our testbed) and running
PASID on top. In particular, as shown in Fig. 4, we set one
device as an AP whereas the other three devices as stations
(STA). STAs periodically perform the beam training phase
with the AP to maintain or establish a new connection. While
running the beam training process between AP and STA1,
each transmission beam pattern is iteratively activated and
power measurements are collected into a database that stores
information about the STA ID, the beam ID, the measured
RSSI, SNR values and the measurement time. This process
is automatically repeated for each STA such that the AP is
provided with an overall picture of the environment channels
condition from different viewpoints. While PASID is only
executed on a single reference device, it can be additionally
run on each STA so as to provide a further enriched system
view of the environment at the expense of some additional
overhead to transmit this data to the AP.

Once the reference scenario without human bodies has been
created, and the neural network of PASID is updated with the
training weight set (as described in Section VI), the detection
system is automatically activated as described in Fig. 1 of
Section III. Measurements are periodically retrieved when the
beam training process is executed such that the neural network
can accurately parse current channel conditions and trigger an
alarm when an intrusion is detected. We refer the reader to
Section VI for more information on the setting parameters
used in our experiments.



VI. EXPERIMENTAL RESULTS

The measurement collection is performed in an office envi-
ronment as described in Section V. We consider three different
office furniture setups by placing a locker in different positions
inside the office. The presence of the locker aims to emulate
a change in the office environment that should not trigger an
intrusion alarm. Devices are configured to have one as AP and
all the others as STAs. In other words, we establish 3 different
mmWave links between each pair of AP and STA.

A. Neural network training

The measurement collection is performed by keeping active
the 802.11ad interface of the devices and forcing the beam
training phase running within a period of 10 minutes, thereby
collecting about 3800 measurements (about 1260 per STA).
We repeat such a measurement process 2 times per each
considered office furniture relocation: at the first stage no
human bodies are placed in the office, while on the second time
humans are walking inside the office. Given that the devices do
not allow to synchronize the beam training process executions,
the number of training phases involving different stations is
slightly different. Thus, depending on the number of STAs
involved in the experiment we create the feature vector Zt as
follows:

Zt = [ζ1
t , ζ

2
t , . . . , ζ

N
t ] (18)

wherein ζdt indicates that the beam training phase is performed
by the dth STA, and N indicates the total number of connected
STAs. Since the t-th SLS phase involves only a specific STA
d, we fill the subset of features in Zt corresponding to d with
the new data, while the remaining features are taken from the
vector Zt−1.

Subsequent vectors Zt belonging to the measurement time
window Tk are then organized in the matrix Ik as described in
Section IV. To train the network we generated several matrices
Ik with overlapping measurement time windows Tk, being
each interval shifted by δt = 10 measurements so that two
consecutive matrices are expressed as Ik = [Zk, . . . ,Zk+δ]
and Ik = [Zk+δ, . . . ,Zk+δ+T ] and Ik+1. Moreover, we
performed data augmentation by reversing the time dimension
of the matrices I to double the dataset. We then labeled
each matrix Ik with the corresponding class, i.e. “intrusion”
or “non-intrusion”, depending respectively on the presence
or absence of humans in the office. This leads to a dataset
consisting of about 22800 matrices I with a balanced mix of
intrusion and non-intrusion classes. We divided the dataset in
training, validation and testing sets, which are constituted by
the 52.5%, 22.5% and 25% of the entire dataset respectively,
and we normalized the dataset as follows:

ZtNORM =
Zt − µZ
σZ ,

(19)

where µZ and σZ are respectively the average value and
variance of the vector Z considering all the measurements
in the training set. We train our neural network with a batch
size of 1000, 30 epochs, a learning rate of 0.0001 and using
the good-performing Adam optimizer as indicated in [17].

Fig. 5: Average intrusion detection accuracy in the office with
different number of connected devices and different sizes of
the measurement time window T (where T = 1 is about 0.5s).

B. Intrusion detection performance

Fig. 5 shows the average intrusion detection performance
achieved by PASID by means of the classification accuracy
metrics considering different numbers of connected STAs and
different sizes for the measurements time window T . From
obtained results we can observe the following: on the one
hand, as the number of connected STAs grows, the intrusion
detection accuracy performance increases because, by adding
different locations of transmitting devices, we increase the
information provided to PASID for the mmWave environment
modeling. On the other hand, increasing the measurement time
window size T also increases the intrusion detection accuracy
performance since a larger temporal sample set provides a
better overview on the different measurement statistics.

Fig. 6 shows the intrusion detection accuracy performance
achieved with an intruder standing still in different zones
of the monitored area modeled with a human phantom. The
results correspond to the worst-case of having a single link
with T = 20. As it can be observed, depending on the
position within the office the accuracy varies depending on
the reflections in the environment with a range varying from
82 to 98%. Considering a real case with a moving intruder or
having more than a single link will result in improved accuracy
ranges getting to 99% on average, as shown in Fig.5.

As discussed in Section V, we might allow STAs collab-
orating with the AP to enrich the overall PASID’s channel
overview at the expense of some communication overhead.
We considered this scenario by adding data available on each
STA to vector Ẑ. Fig. 7 provides the confusion matrix for a
scenario with 3 STAs connected. In this case, PASID achieves
an outstanding accuracy of 99.67% for T = 30.

Finally, as 802.11ad devices are not required to re-train the
beams in case of sufficient RSSI, we evaluate the energy con-
sumption of the devices i) when they are connected, ii) when
they are forced to trigger the beam training phase and iii)



Fig. 6: Intrusion detection accuracy in different zones of the
area of interest.

when PASID is executed. To do so, we connect the devices’
power supply to a smart plug that records the measured energy
consumption when the device 802.11ad interface is powered
off, when its active (but no training phase is performed), when
devices are forced to perform the training phase and, when
PASID is activated.

Results are reported in Table I where the column PASID
indicates the activation of the algorithm (for the AP) while it
indicates when the stations are collaborating with the AP by
sharing their measurements (for the STA).

TABLE I: Power consumption measured for the different
mmWave devices interface states

Idle Active Beam Training PASID
AP 6.8 [W] 7.8 [W] 7.8 [W] 8.0 [W]

STA 6.8 [W] 7.4 [W] 7.4 [W] 7.5 [W]

From the results, it is worth noting that the activation of the
beam training phase does not significantly affect the devices’
power consumption, while the activation of PASID is slightly
increasing the overall devices consumption by ∼ 2%.

C. Intruder Localization

Given the directional nature of the mmWave communica-
tion, we can further exploit the measurements taken during
the beam training phase to sense the propagation environ-
ment towards specific directions. Specifically, we can map,
alongside the intrusion detection, the changes sensed by the
different beams onto the (potential) location of the intruder
inside the area of interest (i.e., within the office). To validate
our idea, we use PASID implementing a variation of the neural
network-based solution. We place the human phantom in each

(a) T = 10 (b) T = 20 (c) T = 30

Fig. 7: Confusion matrices with STAs collaborating to PASID
data gathering.

of the reference squares on the floor of the area of interest4

and we collect 20 minutes of measurements per each reference
square to gather in total about 7600 measurements per each
position. Measurements are associated with the position, i.e.
coordinates, of the corresponding reference square in the area
of interest, which becomes the desired output of the neural
network. To enrich the information during this process, we
consider both the measurements taken by the AP and by the
STAs in the feature vector Z. We divide the dataset in training,
validation and testing sets, with 52.5%, 22.5% and 25% of the
entire set, respectively. Data is then normalized as described
in Eq. (19).

In this case, we neglect the temporal evolution of Z,
conversely, we assume that an intrusion occurred, hence we
aim at mapping Z onto the location of the intruder in the
office. Therefore, we adopt a different neural network archi-
tecture with respect to the one described in Section IV. We
consider a deep neural network with an input layer with the
dimensionality of the vector f , followed by N L-neurons
hidden layers and a 2-neurons output layer. As activation
functions, we select tanh for the hidden layer and linear for
the output one. We train our neural network with a batch
size of 1000, 100 epochs, a learning rate of 0.0001 and using
the good-performing Adam optimizer [17]. Fig. 8a shows the
intruder localization performance with 1 hidden layer network
with different number of neurons, while Fig. 8b is showing
the localization performance achieved by keeping the hidden
layer size at 8-neurons and changing the depth of the network.

Our results show that we can achieve a localization accuracy

(a) Different neurons (b) Different layers

Fig. 8: Cumulative Distribution Function of the intruder local-
ization error.

4We refer the reader to Section V for a detailed description of the human
phantom and the reference squares.



slightly above 2 meters in 98% of the cases, and that increasing
the complexity of the network does not help to improve
localization performances. Therefore, a low complexity ar-
chitecture, which can fit in the limited hardware of COTS
devices is sufficient to effectively exploit directional power
measurements to estimate intruders locations.

VII. RELATED WORK

Recently, Wi-Fi based environmental sensing and signal
human interaction has attracted much attention due to the
ability to detect propagation environment changes caused by
humans, which may perturb the monitored areas, without
requiring any active connection with devices carried by the
intruder [18].

Authors in [19] exploit the variance of the RSSI of the signal
measured between an AP and a STA together with a maximum
likelihood estimator to detect the presence of an intruder in
an indoor environment. Results highlight some weakness of
the signal RSSI in realistic environments as a feature to detect
intrusion due to its high instability. Differently, in [20] RSSI is
extracted by Zigbee sensors. The measurements from different
sensors enable to track RSSI variation from distinct point of
views, which are combined by means of a K-neighborhood
clustering to perform intrusion detection. The localization
and tracking problem exploiting RSSI values obtained from
WSN nodes was reformulated based on an inverse source
problem in [21]. Additionally, another work exploiting power
measurements to detect the presence of entities inside an area
of interest is Radio Tomografic Imaging [22], [23], wherein
the RSSI measured by several sensor is exploited to produce
a signal attenuation map of the monitored area, which can
produce high quality detection and localization at the expense
of a relatively high number of sensors.

RSSI was first utilized in WLAN-based human detection as
it is easy to obtain. However, it suffers from a severe multipath
effect in indoor scenario as it is usually provided by a coarse-
grained measurement by devices, therefore the research com-
munity moved its attention to the exploitation of Channel State
Information (CSI) information to better sense the environment.
Differently from RSSI, which is just capturing the received
power, CSI is able to provide the channel state at the level
of each pair of receiver and transmitter antenna and per each
sub-carrier. However, differently from RSSI measurements the
extraction of CSI measurements from COTS devices requires
some firmware modifications [24].

Authors in [25] present an 802.11n-based human activity
monitoring system that leverages on the predictable fluctuation
of the received CSI. Specifically, they developed techniques for
indoor respiration detection and movement direction estima-
tion using commodity devices. A Passive Intrusion Detection
system based on CSI amplitude variation is proposed in [26],
however it is still built on the 802.11n technology. Similar
to our work, CSI information is collected to train a SVM
classifier aiming to distinguish between static and dynamic
scenarios and triggers an alarm in case of dynamic scenarios.

In [27], authors use the CSI variance as a feature for an
intrusion detection system. Specifically, the measured variance
provides the observations, which are used by a 2-state Hidden
Markov Model to trigger an alarm. CSI variance is explored
also in [28], wherein a device-free passive motion detection
based on the earth mover distance algorithm is proposed.
Another application of 802.11n-based CSI is proposed in [29]
for a device-Free Crowd Counting application, which relies
on the percentage of non-zero elements of the CSI matrix to
count the number of humans in the monitored area. An addi-
tional proposal on the CSI-based WI-Fi indoor localization is
investigated by the authors of [6] that explored the meaningful
features of a Deep Neural Network to perform precise CSI-
based passive indoor localization. Finally, CSI information
together with communication directionality are exploited by
authors in [30] to perform accurate 3D localization of con-
nected devices.

Differently from the above-mentioned state-of-the-art
works, we leverage on the directional properties of 802.11ad-
compliant devices to sense the surrounding environment by
means of directional RSSI measurements. The spatial diversity
allows us to overcome the need of CSI information to achieve
remarkable performance. Therefore, it can be implemented in
802.11ad COTS devices without relevant modifications of the
firmware. To the best of our knowledge, this work is the first
implementation of a passive intrusion detection system running
on commercial 802.11ad devices.

VIII. CONCLUSIONS

mmWave deployments will become pervasive in indoor
environments to address the increasing future users’ data
rates needs. In this paper, we analyze a mmWave technology
solution that exploits its unique propagation properties to
passively detect intruders indoors. The solution has been
modeled analytically and the main limitations of traditional
approaches identified.

Based on this, the machine learning-based solution PASID is
presented that, given a specific indoor space, i) automatically
models the propagation environment and ii) passively detects
if an intruder enters the area, i.e. without requiring/enforcing
any active communication. To evaluate its feasibility in prac-
tice PASID has been deployed in 4 off-the-shelf mmWave
devices in a 32m2 office. Our results show that PASID
achieves an intruder detection effectiveness of ∼ 99% and
localizes targets within a ∼ 2 meters range at a negligible
energy cost (∼ 2%).
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