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Abstract—The emerging network slicing paradigm for 5G
provides new business opportunities by enabling multi-tenancy
support. At the same time, new technical challenges are in-
troduced, as novel resource allocation algorithms are required
accommodating different business models. In particular, infras-
tructure providers need to implement radically new admission
control policies to decide on network slices requests according
to their Service Level Agreements (SLA). When implementing
such admission control policies, infrastructure providers may
apply forecasting techniques in order to adjust the allocated slice
resources so as to significantly improve the network utilization
while meeting network slices’ SLAs.

This paper focuses on the design of three key network slicing
building blocks in charge of (i) traffic analysis and prediction per
network slice, (ii) admission control decisions for network slice
requests, and (iii) adaptive correction of the forecasting solution
based on measured deviations. Our results illustrate the very
substantial potential gains in terms of system utilization as well
as the trade-off between conservative forecasting configurations
versus more aggressive ones (higher gains, SLA risk).

I. INTRODUCTION

In addition to the clear advantages in terms of, among
others, enhanced bandwidth, reduced latency or extended
coverage, the introduction of future 5G networks will have
a significant impact on how operators manage their infrastruc-
ture. In contrast to the relatively monolithic architectures of
3G and 4G, by building on the recent advances in network
softwarization, 5G networks will be highly modular and de-
signed to be future-proof.

5G networks will hence allow higher flexibility: network
virtualization can boost the introduction of very diverse ser-
vices to be deployed on-demand using shared infrastructure.
This feature enables new business opportunities for Mobile
Network Operators (MNO); indeed, hosting different services
with possibly conflicting requirements on the same infrastruc-
ture is currently not achievable with the current one-size-fits-
all architectures. However, it also introduces new critical chal-
lenges. To this end, the network slicing concept [1] is expected
to be one of the technical solutions to these challenges.

Network slicing allows MNOs to open their physical net-
work infrastructure platform to the concurrent deployment
of multiple logical self-contained networks, orchestrated in
different ways according to their specific service requirements;
such network slices are then (temporarily) owned by tenants.
The availability of this vertical market multiplies the moneti-
zation opportunities of the network infrastructure as (i) new
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players may come into play (e.g., automotive industry, e-
health,. . . ), and (ii) a higher infrastructure capacity utilization
can be achieved by admitting network slice requests and
exploiting multiplexing gains. However, the technical enablers
for network slicing admission control need to be investigated.

The 5G Network Slice Broker [2] is a novel network
element that builds on the capacity broker functional block
considered by 3GPP for advanced RAN sharing [3]. It maps
incoming Service Level Agreement (SLA) requirements as-
sociated to network slice requests into physical resources.
Tenants hence obtain a “slice” of the appropriate Radio Access
Network (RAN) elements. The architectural specifications for
this new network paradigm are currently under definition and
the necessary algorithms yet to be devised.

Although very conservative mappings may be considered
for mission critical services that need ultra-high availability,
enhanced admission control algorithms that leverage mul-
tiplexing gains of traffic among slices are the key to the
optimization of network utilization and monetization. To this
end, the ability to predict the actual footprint of a particular
network slice is essential to increase the maximum number of
slices that might be run on the same infrastructure.

Building on this idea, in this paper we design three key
network slicing building blocks: (i) a forecasting module
predicting network slices traffic based on past traffic and user
mobility, (ii) a network slicing admission control algorithm
and (iii) a network slicing scheduler algorithm in charge
of meeting the agreed SLAs and report deviations to the
forecasting module.

The remaining of the paper is organized as follows. In
Section II we review the state-of-the-art solutions before
presenting our framework building blocks in Section III. In
Section IV we give the premises of our forecasting model,
whereas in Section V we formulate the admission control
problem as a geometric knapsack, providing also its NP-
Hardness proof. In Section VI we explain the scheduling
process and how its feedback is used to adjust the forecasting
process. In Section VII we discuss the simulation results and,
finally, we conclude the paper in Section VIII.

II. RELATED WORK

The support of multi-tenancy in 3GPP LTE networks was
originated from active RAN sharing, which facilitated net-
work sharing based on contractual agreements. A study on
virtualization for wireless and mobile networks considering
preliminary proposals such as the GENI project as well as
early LTE base station virtualization is elaborated in [4]. Two
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active network sharing architectures are specified in 3GPP, the
Multi-Operator Core Network (MOCN) allowing each opera-
tor to share eNBs connected on a separate core network and
the Gateway Core Network (GWCN) where operators share
additionally the Mobility Management Entity (MME) [5]. A
complementary network sharing management, which enables
MVNOs to control the allocated resources is defined in [6].
Our proposal exploits the experience of early deployments,
while being compatible with the 3GPP specifications.

A RAN sharing solution applying proportional fairness
criterion is depicted in [7]. For sharing resources among
different operators while considering radio conditions [8]
introduced the Network Virtualization Substrate (NVS), a two-
step process that allows the infrastructure provider to control
the resource allocation towards each virtual instance of an eNB
before each tenant customizes scheduling within the allocated
resources [9]. In our work we adopt a similar two-step process
allocating slices via a broker entity that provides admission
control based on the requested SLAs.

We build on the concept of a signaling-based network
slicing broker solution by elaborating the capacity forecast-
ing problem considering guaranteed and best-effort traffic in
addition to user mobility. A study that explores different
options of network sharing based on a centralized broker is
detailed in [10] considering mobility means, spectrum transfer
policies and resource virtualization enhancing MNO’s limited
resources. Such a study unlike our proposal introduces new
3GPP interfaces to accommodate the broker functionality. A
scheme that integrates the capacity broker with a minimum
set of enhancements on the 3GPP architecture is documented
in [11]. Such capacity broker forecasts the network capacity
allocating guaranteed and best-effort slices, considering the
desired SLA. This study enhances available solutions by in-
troducing algorithms that dynamically evaluate network slices
SLA requests, while maximizing the infrastructure resources
utilization.

III. SYSTEM DESIGN

This paper builds on the concept of a 5G network slice
broker in the context of the 3GPP network sharing manage-
ment architecture [6] for establishing network slices through
signaling. The 5G network slice broker is introduced at the
network management system of the infrastructure provider
being able to exploit 3GPP conventional monitoring proce-
dures for gathering global network load measurements. Such
information can assist the forecasting process, facilitating
admission control and considering the specified network slice
SLAs. To support a signaling-based slice allocation certain
3GPP interfaces need to be enhanced (Type 5 and Itf-N) for
network slice instantiation and configuration while specifying
the time duration, the required resource amount, and additional
requirements, i.e., the traffic SLA. We refer the reader to [2]
for further architectural details.

Fig. 1 depicts the 5G Network Slice Broker building blocks
addressed in this paper. Network slice requests are collected
within a fixed negotiation time window. When the time
window is closed, network slice requests are processed and
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Fig. 1: Block diagram of the 5G Network Slice Broker.

evaluated. A key aspect for an efficient network slice admis-
sion control mechanism is to accurately predict the tenants’
traffic near-future evolution. This is achieved through a Traffic
Forecasting phase in charge of analyzing the network slices
traffic patterns and providing forecasting information to the
Admission Control module, as explained in Section IV. When
no forecasting solution is applied (w/o forecasting) or during
the training period (for adjusting the forecasting algorithm
parameters), network slice SLA request information is used.
Based on such information, Admission Control policies are
applied in order to select the network slice requests granted
for the next time window. Two different algorithms (with
different performance and complexity features) are devised
based on the traffic information provided as input, as explained
in Section V. A list of granted slice requests is sent to
the Scheduling phase that allocates network slice physical
resources and monitors with a penalty history function the
served traffic levels and potential SLA violations. Such a
function is used to provide feedback to the forecasting module
and to adaptively adjust the system, as explained in Section VI.

IV. TRAFFIC FORECASTING

Forecasted traffic pattern information is used to derive actual
traffic shapes and maximize the system resource utilization. A
key property lies on the accuracy of the forecasting algorithm:
the more accurate, the more flexibility in leasing available
resources, the less the probability of violating traffic SLAs.
While the first aspect is deeply assessed hereafter, we refer
the reader to Section VI for more details on SLA violations
and dynamic forecasting parameters adjustments.

A. Tenant traffic analysis: characterization and forecasting

Traffic predictions are computed on an aggregate basis for
every tenant. Each tenant i might ask for a different network
slice request tailored for specific service requirements. Indeed,
the forecasting process can easily categorize the traffic requests
based on related service requirements, thereby performing
a prediction separately per slice. In our analysis, we first
assume traffic requests uniformly distributed within the whole
network. However, in Section IV-B we extend this assumption
for multi-cellular environments where tenant traffic requests
are significantly affected by the user mobility.

We assume different classes of traffic based on specific
SLAs, as shown in Table I. We denote the traffic volumes of



tenant i for traffic class k, e.g., satisfying particular service
requirements, as a realization of a point process, ζ(k)

i =
T∑
t=0

δt r
(k)
i (t), where δt denotes the Dirac measure for sample

t. We express traffic requests r(k)
i (t) in terms of required re-

sources but they can be easily translated into different metrics,
such as latency or throughput demands. Given the periodic
nature of traffic requests, the traffic forecasting is based on an
observed time window, namely TOBS as defined by the vector
r

(k)
i = (r

(k)
i (t − TOBS), r

(k)
i (t − (TOBS + 1)), · · · , r(k)

i (t)).
Thus, the forecasting function fHW provides forecasted traffic
volumes for time period [t + 1, t + TWINDOW] defined as
r̂

(k)
i = (r̂

(k)
i (t+ 1), r̂

(k)
i (t+ 2), · · · , r̂(k)

i (t+ TWINDOW)). This
periodicity translates into seasons of length WS , which is
repeated based on fixed traffic patterns. Within a single season
we assume that process ζ(k)

i is stationary and ergodic. There-
fore, we use the Holt-Winters (HW) forecasting procedure
to analyze and predict future traffic requests associated to a
particular network slice. Without loss of generality, we denote
a specific predicted traffic request r̂(k)

i (t) as r̂(k)
i,t and, based

on the level lt, trend bt and seasonal st factors, we obtain the
following traffic prediction

lt =α(r
(k)
i,t − st−W )+(1− α)(lt−1 + bt−1)

bt =β(Lt − lt−1) + (1− β)bt−1

st = γ(r
(k)
i,t − lt−1 − bt−1) + (1− γ)st−W

r̂
(k)
i,t+TWINDOW

= lt + bth+ st+TWINDOW−W .

(1)

We rely on the additive version of the HW forecasting problem
as the seasonal effect does not depend on the mean traffic
level of the observed time window but instead it is added
considering values predicted through level and trend effects.

While the set of optimal HW parameters α, β and γ can
be obtained during a training period through existing tech-
niques [12], we focus on the forecasting errors and how the
forecasting inaccuracy may affect our network slicing solution.
We define the one-step training forecasting error e(k)

i,t as follows

e
(k)
i,t = r

(k)
i,t − r̂

(k)
i,t = r

(k)
i,t − (lt−1 + bt−1 + st−1), (2)

which can be obtained during the training period of our
forecasting algorithm, i.e., when predicted values are com-
pared with the observed ones. Given that our process ζ

(k)
i

is ergodic, assuming an optimal HW parameter set, for any
predicted value at time z we can derive the prediction in-
terval

[
l̂l

(k,χ)

i,z , ĥh
(k,χ)

i,z

]
wherein future traffic requests lie for

that particular network slice with a certain probability χ
(k)
i .

Analytically, it holds that

Pr
{
l̂l

(k,χ)

i,z ≤ r̂(k)
i,z ≤ ĥh

(k,χ)

i,z

}
= χ

(k)
i ,∀z ∈ [t+1, t+TWINDOW]

(3)
where ĥh

(k,χ)

i,z (or l̂l
(k,χ)

i,z ) = r̂
(k)
i,z + (−)Ωχ

√
V ar(e

(k)
i,z ) and

V ar(e
(k)
i,z ) ≈

(
(1 + (z − 1)α2[1 + zβ +

z(2z − 1)

6
β2]

)
σ2
e .

While Ωχ denotes the one-tailed value of a standard nor-
mal distribution such that we obtain χ

(k)
i probability, σ2

e

is the variance of one-step training forecasting error, i.e.,
σ2
e = V ar(e

(k)
i,t ), over the observed time window. Due to

the penalties imposed by traffic SLAs, we focus only on
the upper bound of the prediction interval as it provides the
“worst-case” of a forecasted traffic level. From Eq. (3), a
larger prediction time window TWINDOW, e.g., a higher number
of predicted values z, leads to a less accuracy and behaves
closer to the real network slice demand (limited network
slice resources utilization). Conversely, an accurate forecasting
with a lower error probability can result in severe penalties
for not having guaranteed the traffic SLAs. Therefore, we
adjust the forecasting error probability χ

(k)
i according to the

service requirements and to the number of prediction points the
forecasting process needs to perform. For instance, best-effort
traffic requests having no stringent requirements can tolerate
a prediction with a longer time pace resulting in imprecise
values. This makes the upper bound ĥh

(k,χ)

i,z very close to
the real (future) values r(k,χ)

i,z regardless the error probability
χ

(k)
i as the number of z values to predict is limited. Hence,

we might select for this service type a low forecasting error
probability χ(k)

i . On the other hand, when guaranteed bit rate
traffic is considered, the corresponding SLA must be fulfilled
in a shorter time basis, which makes our forecasting process
much more complex requiring significantly more predicted
values z. Therefore, our system models such a type of traffic
with a higher forecasting error probability χ(k)

i .
Mathematically, traffic class k = 0 provides a forecasted
horizon longer than the other traffic classes, i.e., a higher
number of values z must be predicted. Hence, we can derive
an upper bound for the forecasting probability error per tenant
i. We calculate the maximum potential gain between the
slice request and the forecasted traffic requests as d̂

(k)
i =

max
z∈TWINDOW

(
R

(k)
i − r̂

(k)
i,z

)
. We then compute the forecasting

error probability as the following

χ
(k=0)
i : Ωχ

√
V ar(e

(k=0)
i,z ) = d̂

(k=0)
i . (4)

As soon as the potential gain d̂(k=0)
i becomes very large, we

cap the one-tailed value Ωχ to 3.49 resulting in χ
(k=0)
i =

99.9%. Conversely, we compute the forecasting error prob-
ability χ

(k=|K|)
i = 50% for the best-effort traffic, which is

supposed to have relaxed traffic requirements. Intermediate
forecasting error probabilities χ(k)

i for the other traffic classes
k are calculated from (4) by linearly deriving d̂(k)

i values from
the upper and the lower bound values. However, forecasting
error probability values are dynamically assessed and adjusted
based on the SLA violations experienced during the scheduling
process, as explained in detail in Section VI-B.

B. User mobility and traffic model periodicity

We extend our forecasting model for dynamic scenarios
where user mobility is considered and the traffic periodicity



TABLE I: Network slice traffic requirements [13]

k T (k) Type and QCI
0 10 ms GBR - 65
1 50 ms GBR - 3
2 100 ms GBR - 1
3 150 ms GBR - 2
4 300 ms non-GBR - 6
5 1000 ms non-GBR - 9

assumption no longer holds. We assume a multi-cellular en-
vironment covering the whole area. For that reason, we use
human-based mobility patterns for advancing the forecasting
process accuracy. We consider the well-accepted SLAW mo-
bility model [14] for user motions. In particular, users move
among a number of waypoints, which are distributed over
the network area according to self-similarity rules forming a
given number of clusters. Clusters with more waypoints are
considered as hotspots attracting more users. While performing
a flight (a movement from one waypoint to the other within
the same trip), based on the gravity probability, users choose a
set of clusters which are dynamically and randomly replaced
during the flight. Then, users start moving between a subset
of waypoints residing within the selected clusters according to
a least-action trip planning (LATP) with αSLAW = 3. Traffic
requests come randomly during the user trip. Assuming that
users stop when reaching a waypoint for a pause-time, we can
model the value of the flight-time (xL) and pause-time (xP ) as
a random value drawn from a heavy-tailed distribution function
defined in terms of Fourier transformations as

fL(x) = fP (x) =
1

2π

∞∫
−∞

e−iu x−|ρu|
αDISTR du (5)

where ρ is the scale factor and αDISTR depends on the
distribution considered (pause-time or flight-time). Given a
uniform user speed distribution, the traffic model of con-
sidered users is dominated by a heavy-tailed distribution,
whose components, as showed in Eq. (5), can be decoupled
to obtain again a periodic behaviour. Without loss of gen-
erality, assuming a period M and a generic traffic vector
r

(k)
i = {rt}, the forecasting process applies a Discrete

Fourier Transform (DFT) to retrieve the M -periodic samples

Rw =
M−1∑
n=0

rte
−iw 2π

N t, where w = 0, · · · ,M − 1. Please

note that Rw is a complex number translating the sinusoidal
component of rt. Thus, the forecasting process can obtain
all single time-series components derived by each of those
frequency samples by applying the Inverse Discrete Fourier
Transform (IDFT), e.g., rn = 1

N

∑M−1
w=0 Rwe

2πi
Nwn , where

n = 0, · · · , N − 1, finally resulting in a periodic traffic vector
r

(k)
i = (r

(k)
i (n), r

(k)
i (n+ 1), · · · , r(k)

i (n+M)).

V. ADMISSION CONTROL: DESIGN AND VALIDATION

A 5G Network Slice Broker might decide on the network
slice requests to be granted for the subsequent time window
TWINDOW based solely on the current resource availability.
However, if forecasting information is considered, network
slice requests might be accurately reshaped (Fig. 2) to fit
additional slice requests into the system.
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Fig. 2: Admission control problem as geometric knapsack
problem.

A mathematical approach is proposed next to fully under-
stand the admission control problem for both cases. Next,
we prove its NP-Hardness and suggest a baseline algorithm
for allocating network slice requests when no forecasting
information is available. Then, we detail the Forecasting-aware
Network Slicer algorithm to efficiently perform the admission
control phase exploiting accurate traffic pattern information.

A. Problem Formulation
We initially assume a constant amount of resources re-

quired for a network slice instantiation. However, we show
that relaxing such an assumption, by considering different
forecasted traffic levels, makes the problem more complex,
but still tractable for our admission control process.

Let us define a network slice request as σ(k)
i = {R,L, i, k}

where i identifies the tenant, R is the amount of resources
required, L is the time duration of the slice and k is the
traffic class. Without loss of generality, we simply refer to
a tenant request as R(k)

i (Li). Recalling the main objective as
the network slice requests accommodation while maximizing
the network resource utilization within a fixed time window
TWINDOW, we next derive our model.

Let us assume a rectangular box with fixed width W and
height H representing the resource availability within a fixed
time window. In particular, the box width corresponds to
TWINDOW and box height corresponds to the total amount of
resources Θ. Let us assume a set of items I, where each
item i ∈ I corresponds to a network slice request having
width wi corresponding to slice duration Li and height hi
corresponding to the amount of resources Ri. In addition, each
item is provided with a profit ci corresponding, in our case,
to the amount of resources needed. This assumption relies
on the fact that every slice request pays the same amount of
money proportional to the number of resources granted 1. The
objective of our admission control problem is to find a subset
of items I ′ ⊆ I which maximizes the total profit

∑
i∈I′ ci,

e.g., the total amount of used resources, as shown in Fig. 2.

Lemma 1. Let the overall system resource availability be a
box with height Θ and width T , and let each item i ∈ I be the
network slice request σi with height Ri and width Li. Then,

1This assumption could be relaxed to reflect a different economic model
within the multi-tenancy framework, which is out of the scope of the paper.



the admission control problem is mapped onto a Geometric
Two-dimensional knapsack problem with the objective of filling
up our system capacity with network slice requests while
maximizing the network resources utilization.

Let us now assume tenant requests characterized by a
set R̂(k)

i,z = ĥh
(k,χ)

i,z representing the predicted amount of
needed resources per time z for a traffic type k (i.e., given
a forecasting error probability χ(k)

i ) based on the forecasting
phase. This results in time-variant resource requests where
shapes are no longer rectangular.

Lemma 1a. Let the overall system capacity be a box with
height Θ and width T , and let each item i ∈ I be the
network slice request σi with irregular shapes, identified by
different height values R(k)

i,z and width Li. Then, the admission
control problem is mapped onto a Flexibile Geometric Two-
dimensional knapsack problem, with the objective of maximiz-
ing the network resources utilization whilst accommodating
network slice requests, assuring traffic class time constraints.

An illustrative example is provided in Fig. 2 wherein
different amounts of resource values are forecasted for a
single network slice request. It may be observed that when
the forecasting is accurate, i.e. real traffic (red points) are
bounded within new slice values (slice i = 4), more room
can accommodate more slices (i = 6). Please note that in
our case the (flexible) geometric two-dimensional knapsack
problem is constrained by the orientation law of the considered
items. In particular, each item i has a fixed orientation, which
can not be changed to fit in the box. Although some state-
of-the-art work calls such a problem constrained geometrical
knapsack problem, we prefer to omit the “constrained” word
as it may refer to additional constraints on the relationship
between items stored in the box, which are out of the scope
of this work. We can formulate our admission control problem
as follows

Problem ADM-CONTROL:

maximize
∑
i∈I

ci · xi

subject to
∑
i∈I

wi · xi ≤W ; (relaxed)

S(xi) ∩ S(xk) = ∅, ∀i 6= k;
S(xi) ⊂ S, ∀i ∈ I;
xi ∈ [0, 1], ∀i ∈ I;

where S(xi) depicts the geometrical area of the item i (either
rectangular or irregular defined) whereas S is the area of
the box, i.e., |S| = T · Θ. The first constraint refers to the
weight of each item. For the sake of simplicity we consider the
weight capacity of our box as infinite W =∞ to neglect the
item weight. The next two constraints state that items cannot
overlap with each other and must be contained within the total
space of the box. The solution of such a problem provides a set
of xi, which is a binary value indicating whether the item i is
admitted into the system or rejected for the next time window
TWINDOW, e.g., a list of granted slice requests in Fig. 1.
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Fig. 3: Admitted slice requests within a time windows while
collecting slice requests with GBR traffic requirements (k = 0)
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B. Complexity Analysis
We analyze the complexity issues of the admission con-

trol problem providing practical algorithms in the next
section. We can formulate the following decision prob-
lem DEC-ADM-CONTROL: given an arbitrary value V , n
items with a value ci and a given area ai enclosed within
a two-dimensional shape identified by R

(k)
i,z and Li, and

a box with capacity S delimited by Θ and T , is there a
subset I ∈ {1, 2, · · · , n} such that items do not overlap and∑
i∈I ci ≥ V ?

Lemma 2. Considering all items with full flexible dimensions,
we can identify one single weight wi per item representing
the area required. Then, if the utility value ci = wi the
decision problem DEC-ADM-CONTROL reduces to a “Subset
Sum Problem”.

Theorem 1. The decision problem DEC-ADM-CONTROL is
NP-Complete and Problem ADM-CONTROL is NP-Hard for
any type of traffic k along the network slice request.

Sketch of Proof: We use a reduction from the subset sum
problem based on Lemma 2. We apply a polynomial re-
duction to the decision problem DEC-ADM-CONTROL con-
sidering only items with full flexible dimensions collapsed
into a weight wi and utility value equal to the weights
ci = wi. This reduces the problem to a Subset-Sum prob-
lem, known to be NP-COMPLETE. When considering items
with fixed resource provisioning, e.g., items with constrained
shape values, it is even more difficult to find a solution
to Problem DEC-ADM-CONTROL, which proves the NP-
Completeness. Based on that, for all ε > 0, approximating the
solution for Problem ADM-CONTROL, |I| = n within n1−ε,
is NP-Hard. This proves that our Problem ADM-CONTROL is
NP-Hard.

Theorem 1 suggests that no optimal poly-time algorithm
solves our admission control problem. Interestingly, we remark
that the admission control problem is easier when only best-
effort slice requests are processed (still NP-Hard). This could
negatively drive the infrastructure provider to have a particular
tendency for best-effort, or less-demanding, requirements as
depicted in Fig. 3. In particular, assuming only stringent traffic
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Fig. 4: System utilization with different utility functions.

class requirements GBR (k = 0) and best-effort (BE) class
(k = 5), we show the number of admitted slice requests
considering different resource demands to the 5G Network
Slice Broker. The total number of admitted slices increases
with the number of best-effort slice requests showing that best-
effort slice requests are preferred due to the higher flexibility.
This is further supported by Fig. 4(a), where we show the
contour of the total system utilization when different number
of slice requests reach the network. Although a disparity
between GBR and BE slice requests appears, the utilization of
the system is maximized providing outstanding results (more
than 90%) in the best case.

Along these lines, we provide a smart mechanism which
ensures no traffic inter-class prioritization. We define the utility
value in Problem ADM-CONTROL for each slice requests as
ci = LiRi

(T (k))η
, with η ∈ {0, 1}. For η = 0, the utility

value is exactly the amount of data required within the slice
whereas η = 1 leads to more priority for strict service
requirements slices. In Fig. 4(b) we show the contour of the
system utilization when η = 1. While the inter-class fairness
is guaranteed (as shown in the top-right part of the picture),
the overall utilization degrades exhibiting values around 55%
in the best case.

C. Heuristic algorithm design
The admission control needs to cope with different network

slice requests and optimize the total utility function, as shown
in Problem ADM-CONTROL. Network slice requests can be (i)
regularly shaped, i.e., no forecasted information is considered,
but with different flexibility degrees due to the traffic class
considered, (ii) irregularly shaped exhibiting a different degree
of freedom. The first class of network slice requests is handled
through a Network Slices Packer algorithm, a revised and
improved version of [15]. The second class of network slice
problem admits at least the same solution of the first class but,
if properly explored, it could provide much more flexibility
and resources utilization.

Network Slices Packer. We assume rectangular shapes
for network slice requests with different traffic requirements.
When traffic class k = 0, the regular shape of the network slice
is hardly defined and no flexibility is allowed for allocating
the traffic requests. Conversely, when less-demanding slice
requests k > 0 are considered, the slice might be reshaped,
delaying the slice traffic, to efficiently fit into the network.

We rely on the assumption that each tenant is not allowed
to ask more than the half of the resource availability of the

Algorithm 1 Network Slices Packer: Algorithm to admit network
slice requests σ(k)

i within the system capacity Θ for the next time
window TWINDOW.

Input: Σ = {σ(k)
i },Θ, TWINDOW, S

Initialization: C ← ∅,F1 ← ∅,F2 ← ∅, E ← ∅
Procedure

1: for all Cl ←
(Σ

2

)
do

2: if Cl fits into S then
3: C ← C ∪ Cl
4: end if
5: end for
6: for all Cl ∈ C do
7: {v(Cl ∪Bl), s(Cl ∪Bl)} ← Solve the knapsack problem P (Cl)
8: end for
9: l∗ = arg max

l∈C
{v(Cl ∪Bl)}

10: if v(Cl∗) ≥ v(Cl∗∪Bl∗)
2

then
11: return Cl∗
12: else
13: F1 ← Cl∗
14: F2 ← Bl∗
15: if s(F1) ≥ |S|

2
then

16: return Bl∗
17: else
18: Sort F2 in non-increasing order of their profits and traffic class k
19: while s(F1) < S

2
do

20: e = pop(F2)
21: F1 ← {F1 ∪ e}
22: end while
23: if v(F2) ≥ v(Cl∗∪Bl∗)

2
then

24: return v(F2)
25: else
26: E ← max{v(F1 \ e); v(F2)}
27: return E
28: end if
29: end if
30: end if

infrastructure provider, i.e., Ri ≤ Θ
2 . This implies that at

least 2 network slices can be accommodated. The algorithm
is listed in Algorithm 1. Among all possible pairs of network
slice requests, only those fitting the available system capacity
are taken into account (line 2). For each 2-slice set (Cl),
we formulate a 0-1 knapsack problem to maximize the total
profit assuming a single weight (the area of the slice) per item
(Ri · Li). The item set to evaluate for the knapsack problem
includes the 2-slice set (Cl) and all the other slices (Bl),
while considering Cl as already allocated slices. Based on the
FPTAS proposed in [16], we retrieve the best solution, i.e., a
set of network slice requests (Cl∗ ∪Bl∗) among all knapsack
problems (line 9). If the total profit v(·) assigned to the 2-
slice set requests Cl∗ is greater than the half of the best profit
retrieved after running all knapsack problems, we keep Cl∗
as the best feasible set (line 10-11). Otherwise, we split the
optimal set into two subsets F1 and F2 (line 13-14). If the total
space covered by the items in F1 is greater than the half of
the total system capacity area (line 15), the second subset F2

will cover less then the half of the available system capacity 2,
and a total profit greater than the half of the optimal solution.
Therefore, the subset F2 = Bl∗ could be easily (in polynomial
time) packed into the system capacity (line 16). Otherwise, we

2Based on the Steinberg’s theorem, if the sum of the item areas are less than
the half of the box, they can be packed. See A. Steinberg, “A strip-packing
algorithm with absolute performance bound 2”, SIAM Journal on Computing.



move the item with the greatest profit and the highest traffic
class k (more flexible) from F2 to F1 until the space of F1

is greater than the half of the system capacity (lines 19-22).
Then, if the total profit of F2 is greater than the half of the
optimal one (line 23), the algorithm ends and we keep F2 as
the optimal set. Otherwise, we choose the set providing the
best total profit after comparing F2, without the latest added
element, with F1.

The algorithm provides a performance ratio of at most
5
2 + ε. The first 5 rows of our algorithm are solved within
O(n2) computational time, revealing the number of knapsack
problems P (Cl) to be solved. Given that the knapsack problem
solution is achieved within a O(n log n), as the solution is
optimal with a moderate number of items, the complexity of
the Network Slices Packer is dominated by O(n3 log n).

Forecasting-aware Network Slicer. When the forecasted
information is available, the admission control gets more room
to fit more network slice requests, while still guaranteeing the
committed traffic SLAs. The algorithm is reflects the concept
of simulated annealing [17]. The additional complexity is due
to the feasibility check of a given set of items into the system
capacity: packing items in a different order might influence
the solution optimality in the next attempts.

We adopt a coding scheme called sequence pair [18] to
represent candidate solutions of Problem ADM-CONTROL.
The solution is represented by a pair of permutations of
|I| items {π+, π−}. π+ permutation indicates the spatial
relation between items on the horizontal axis, e.g., if i is
before j it should be allocated on the left of j. Similarly,
π− refers to the vertical axis. By doing so, the simulated
annealing algorithm could easily change the permutations by
checking at every step kk whether the new locations are (i)
feasible and (ii) provide a greater objective function value,
i.e., ∆F = Fkk+1(x)− Fkk(x) > 0. However, solutions with
lower objectives are also accepted according to an admission
probability Pra(∆F ) = ∆F

Tr , where Tr is the temperature
obtained by the logarithmic cooling function Trk = Tr0

ln(1+kk)
and Tr0 is the initial temperature. The Forecasting-aware
Network Slicer algorithm starts by sorting in non-increasing
order the slice requests according to their profits (ci) and traffic
class (k). At each step kk, the algorithm decides to shuffle
permutations π+, π−, add a new item into both sets or remove
an existing one. The algorithms stops when the temperature
Tr has reached a zero value and no better solutions are found
in the next steps. While this algorithm asymptotically finds
the global optimal solution, the running time might be not
affordable. In Section VII, we provide an empirical complexity
analysis with suggestions to improve it.

VI. SCHEDULING NETWORK SLICE TRAFFIC

We design a novel network slice scheduler accomplishing
two tasks: (i) serving the tenant traffic of granted network
slices, (ii) providing a closed-loop solution for driving the
forecasting process to achieve optimal performance (Fig. 1).

A. Multi-class traffic scheduler
We generalize the scheduling model for accounting different

traffic SLAs. We assume a traffic request from tenant i for

traffic class k as r(k)
i,z . We consider 6 traffic classes as described

in Table I. Each traffic class is characterized by a time
window T (k) identifying the offset between two consecutive
resource requests [z; z+ 1], shorter for high-demanding traffic
requirements and larger for best-effort class. The scheduler
ensures that the whole amount of required resources is served
for any given time window T (k).

The key-objective of this novel network slice traffic sched-
uler is to minimize served resources while guaranteeing the
traffic SLAs within a network slice. When forecasted informa-
tion is available, the scheduler expects slice traffic levels below
the predicted traffic bounds such that r(k)

i,z ≤ R̂
(k)
i,z ,∀z ∈ Li.

If forecasted traffic bounds are underestimated and the traffic
demands exceed the expected values, traffic requests are au-
tomatically capped at the original amount of resources agreed
during the slice request admission, i.e., R(k)

i . Hence, slice
allocations may overlap and traffic class requirements might
not be fulfilled incurring in slice SLA violations.

We model the scheduler problem as a general minimization
problem addressing any traffic class SLA. We introduce the
scheduled traffic s(k)

i,j representing the real amount of resource
served per time j upon the list of admitted slices x

(k)
i is

available from the admission control phase. The problem is
formulated as follows

Problem SLICER-SCHEDULING:

minimize s
(k)
i,j

subject to

(
zk+t̄+T (k)∑
j=zk+t̄

s
(k)
i,j

)
≥ r(k)

i,z x
(k)
i , ∀z∈

[
0,
⌈
Li
T (k)

⌉
−1
]
;∑

i∈N
s

(k)
i,j ≤ Θ + P

(k)
i,j , ∀j ∈ L;

s
(k)
i,j ∈ R+, ∀i ∈ N , j ∈ L, k ∈ K;

where Θ is the total capacity of the system expressed as the
total amount of resource blocks whereas P (k)

i,j is the penalty
incurred for not having satisfied a particular tenant slice traffic
SLA, namely SLA violation. The network slice scheduler
keeps track of SLA violations to promptly trigger dynamic
forecasting parameters adjustments.

B. Online Reinforcement Learning
Forecasting process failures may lead the admission con-

trol to overbook available network resources and experience
SLA violations. A monitoring procedure is designed to keep
track of the number of such violations and feed back the
forecasting phase through a penalty value P

(k)
i,j in Prob-

lem SLICER-SCHEDULING. We can derive from Eq. (4),
the forecasting error probability for a generic traffic class k as
follows

χ
(k)
i : h

(k)
i Ωχ

√
V ar(e

(k)
i,z ) = d̂

(k)
i (6)

where the penalty history function is defined as h
(k)
i =

e
nm

WS+nm assuming nm as the number of times the penalty
P

(k)
i,j = 0,∀j, and WS as the length of the season considered in

the forecasting process. The penalty history function drives the
system from a conservative behaviour where a higher forecast-
ing error probability is applied to a more aggressive evolution,
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Fig. 5: System performance comparison with and without
forecasting preprocessing.

when no SLA violation occurs. In case of forecasting failures,
a larger forecasting error probability is restored and limited
gains are achieved.

VII. PERFORMANCE EVALUATION

We carried out an exhaustive simulation campaign to vali-
date our framework. Our system is evaluated through an ad-
hoc simulator developed in MATLAB R©with a dual Intel(R)
Xeon CPU 2.40GHz 4-cores and 16GB RAM. A summary of
the simulation parameters used is provided in Table II. The
system includes |B| = 7 base stations ([19]) and |I| = 10
tenants ([1]). The average number of users associated with
a tenant is E[|Ui|] = 100, which are distributed uniformly.
When they move, a SLAW model is applied [14]. Tenant slice
requests may range between the 5% and the 25% of the total
system capacity, while their duration ranges between 1000 and
3600s. Pi,k defines the probability that a slice request reaches
the network within a time window. At the beginning of each
TWINDOW the admission control procedure is invoked. Based on
the forecasting information, network slice requests are granted
for the next time window and the associated slice traffic served.

A. Dynamics and SLA violations

A dynamic analysis of our system is provided here. Since
no other work in the literature has proposed a solution
for addressing network slice request accommodation, we
benchmark our proposal against a legacy solution wherein
no forecasted information is available during the admission
control phase. The results are shown in Fig. 5(a) for a

TABLE II: System parameters ([19])
Parameters Values Parameters Values
|I| 10 |B| 7 (21 sectors)
|K| 6 E[|Ui|] 100
Θ 200 RBs ISD 250m
TOBS 3600 s η 0

TWINDOW 7200 s Pi,k
1

|I||K|
Li {1000; 3600} s Ri {Θ ∗ 0.05; Θ ∗ 0.25}

αSLAW 3 Av. Speed 1.5m/s
ρSLAW 2.5 αDISTR 1.5
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Fig. 6: System utilization gain for different network scenarios.

long simulation period of 720 minutes in terms of system
utilization Ul = Θ −

∑
i,k s

(k)
i,j ,∀j ∈ TWINDOW, based on

Problem SLICER-SCHEDULING. After a prior training pe-
riod, the forecasting process provides useful information to the
admission control block. Based on such information, network
slice requests are properly reshaped and more traffic requests
are efficiently accommodated into the network capacity. The
gain after the second time window is about 20%. While no
SLA violation occurs, the forecasting process moves from
a conservative behaviour to a more aggressive by reducing
the safe margin, i.e., the forecasting error probability from
Eq. (6), which visibly brings more gain in terms of system
utilization. However, due to the randomness of the traffic
requests approaching the system, forecasted information might
underestimate the real traffic level resulting in a SLA violation,
as shown in Fig. 5(b). This promptly triggers the penalty
history function h

(k)
i which increases the forecasting error

probability in the next time window keeping the SLA violation
under control. Interestingly, our solution boosts the system
utilization up to 100% at expenses of a small SLA violation
per tenant request of about 1.8% in a very short period.

B. System Capacity Utilization

The helpful forecasted information is evaluated through
a number of network scenarios. In Fig. 6, we consider 4
scenarios where the infrastructure provider decides to lease
different portions of its own available resources, i.e., Θ from
50 to 200. The results are obtained for the forecasting case
and the legacy option, after averaging them over 12 hours time
period. We plot the relative gain GF =

(
ŪlF
ŪlL
− 1
)

%, where
Ū lF and Ū lL are the average utilization value of forecasting
and legacy solution, respectively.

We remark two key-points: (i) the increasing slope while
augmenting the number of tenants, (ii) the larger the system
capacity, the greater the relative gain. A small number of
tenants implies a few network slice requests which are fully
accommodated exhibiting a small relative gain. As soon as the
network becomes congested, i.e., some network slice requests
must be rejected, the utilization of our proposal outperforms
the legacy scheme (GF � 0) due to a wider distribution of net-



TABLE III: Empirical complexity analysis

No. of tenants 10 20 30
No. of slice req. 30 - 60 60 - 120 90 - 180
Algorithms slices time slices time slices time

[no.] [sec] [no.] [sec] [no.] [sec]
Network 9.584 78.1 11.337 215.7 13.226 497
Slices Packer
Forecasting-aw. 9.607 129.5 13.061 714 15.81 3514.4
Network Slicer (11.897) (600) (13.307) (600)

work slice request values. On the other hand, when the system
capacity is improved, there is more room to accommodate the
network slices into the system showing better performances.
This intrinsically suggests the infrastructure provider to lease
as much as possible network resources portion to improve the
overall system utilization.

C. Algorithm Complexity

We finally provide an empirically study of the computational
cost for the two admission control algorithms proposed. For a
fair comparison, we apply the algorithm to the same instances
of the problem and average the results over several instances
(100). We only compare the case where regular network slice
shapes are considered, as the network slices packer is not
designed to handle different problems.

In Table III, we show the results for different number of
tenants asking for network slice requests. The results are ex-
pressed in terms of number of slices admitted into the system
capacity and time elapsed for getting the solution. The average
number of network slice requests within a single instance of
the problem ranges from 30 (10 tenants) to 90 (30 tenants).
Interestingly, the Forecasting-aware Network Slicer algorithm
outperforms the Network Slices Packer but experiencing a
longer computational time. We apply a time limit TZ = 600s
to avoid the process starvation. Given the long-term execution
(every 30 minutes) of those admission control algorithms, this
time bound is still valid for the overall system implementation.
Nonetheless, the Forecasting-aware Network Slicer algorithm
shows reasonable results in an affordable computing time.

Conversely, when irregular shape patterns are considered,
the time complexity of the Forecasting-aware Network slicer
gets even worse. This drawback is significant when the number
of network slice requests is greater then 50. We overcome
such a problem in the following way. We apply the network
slices packer algorithm for the equivalent version with regular
shapes. This provides an initial state for the Forecasting-aware
Network slicer, which can start exploring the neighbouring
solutions while checking whether they fit into the system
capacity. In this way, we are able to reduce the complexity time
up to 20% for the Forecasting-aware Network slicer making
it reasonable for realistic deployments.

VIII. CONCLUSIONS

In this paper we have presented our proposed network
slicing traffic forecasting, admission control and scheduling
solutions for a 5G Network Slice Brokering system. The
forecasting solution designed builds on Holt-Winters theory
to predict future traffic levels per network slice considering
differentiated classes and such that the system utilization can

be maximized by an admission control decision engine. The
admission control solution has been mapped into a geometric
knapsack problem and two low-complexity algorithms de-
signed for regular and irregular network slice requests. The
network slice scheduling solution keeps track of SLA viola-
tions per slice and feeds them back to the forecasting engine
such that it adaptively corrects to deviations. Our main findings
can be summarized as follows: i) Holt-Winters theory can be
exploited for network slicing traffic forecasting and applied to
regular and irregular requests, ii) elastic traffic network slice
requests help in increasing the maximum achievable system
utilization, iii) the forecasting benefits increase as the number
of network slice requests and system capacity increases and iv)
low SLA violation risk levels result in very significant system
utilization gains.
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