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Abstract:  We argue for network slicing as an efficient solution that addresses the diverse requirements of 5G mobile networks, thus provid-

ing the necessary flexibility and scalability associated with future network implementations. We elaborate on the challenges that emerge when 

we design 5G networks based on network slicing. We focus on the architectural aspects associated with the coexistence of dedicated as well as 

shared slices in the network. In particular, we analyze the realization options of a flexible radio access network with focus on network slicing and 

their impact on the design of 5G mobile networks. In addition to the technical study, this paper provides an investigation of the revenue potential 

of network slicing, where the applications that originate from such concept and the profit capabilities from the network operator’s perspective 

are put forward. 

Index Terms— Dedicated slices, multi-connectivity, network flexibility, network scalability, slicing multiplexing, slicing reve-

nue. 

I. INTRODUCTION 

Future mobile networks will be subject to a manifold of technical and service requirements with respect to 

throughput, latency, reliability, availability, as well as operational requirements such as energy-efficiency 

and cost-efficiency. These requirements stem from an increasing diversity of services carried by the mobile 

network as well as novel application areas such as Industry 4.0, vehicular communication, or smart grid. In 

order to provide cost- and energy-efficient solutions, it is necessary to avoid a largely segmented solution 

space with deployments of individual mobile network solutions for each use case. Hence, there is the need 

for a flexible and scalable mobile network. Thereby, flexibility and scalability go hand in hand and make sure 

that the mobile network can be appropriately adopted to the network environment of a particular use case, 

e.g., available bandwidth, transport network, or access point density. Furthermore, the actual quantitative 

technical requirements may differ significantly, e.g., while packet error rates of 10-4 are acceptable in a mo-

bile broadband system, industrial use cases require significantly lower packet and frame error rates, in par-

ticular if latency constraints must be met [1]. 

A. Definition of Network Slices 

In order to cope with the above requirements, the concept of network slicing has been proposed as a means 

for providing better resource isolation and increased statistical multiplexing [2]. The Next Generation Mobile 

Network Alliance (NGMN) defines network slicing as a concept for running multiple logical networks as 

independent business operations on a common physical infrastructure [2]. Each network slice represents an 

independent virtualized end-to-end network and allows operators to run different deployments based on dif-

ferent architectures in parallel. In the following, the term network slice refers to a specific instance of such a 

logical network (instantiated according to a pre-defined network slice blueprint). 

A network slice as logical end-to-end construct is self-contained, having customized functions including also 

those in the user equipment (UE), and using network function chains for delivering services to a given group 

of devices. Employing network slicing in 5G networks engenders a number of challenges, in part due to 

difficulties in virtualizing and apportioning the Radio Access Network (RAN) into different slices, as dis-

cussed in the ensuing sub-section. 
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B. Design Challenges  

In the following, we provide a detailed explanation of the potential challenges associated with the implemen-

tation of network slicing in future networks.  

Granularity constraints in spectrum and radio-level resource sharing: Unlike fixed network slices which 

can be scaled up by adding more hardware resources, RAN slicing quickly runs into a physical constraint: 

The limited availability of spectrum. This limitation is deteriorated if dedicated carriers are assigned to indi-

vidual slices, since such approach does not leverage the network’s potential for multiplexing gains. 

Radio Access Technology (RAT) heterogeneity and spatial diversity: It is expected that 5G will incorpo-

rate several kinds of RATs and air interfaces, each with different capabilities and needs. General-purpose 

infrastructure providers will need to carefully plan and apply different technologies to serve diverse tenant 

needs. Yet, it may be infeasible to satisfy the needs of each application at any location. For instance, Tactile 

Internet may require careful positioning of resources to minimize latency. In another example, an Industrial 

control network might have to use a certain computational resource in a given location for security reasons. 

Managing information exposure and sharing constraints: Different flavors of network slices can be de-

fined based on the extent of network elements that are shared, e.g., whether only the PHY is shared, whether 

the MAC layer is shared, or even whether the complete RAN is shared. The more the information that can 

be provided by the infrastructure about the shared parts to the network slice, the more efficient the slice can 

be operated. However, exposing information also creates new potential security vulnerabilities between in-

frastructure-providers and their clients (also known as “tenants” [2]), as well as between tenants themselves. 

Security requirements of specific tenant applications, such as traffic associated with emergency services, or 

machine control (e.g., remote surgery or vehicular control), could put constraints on how the slices are parti-

tioned, or even prevent network slices to co-exist and thus share the same hardware at all. 

Transparency of network slicing: A major question is whether a slice can be extended all the way to the 

UE. That is, whether the definition of the slice will be transparent to the UE, or whether the UE will be aware 

of the network slice. A slicing-aware UE may open up new possibilities, e.g., a simplification of multi-slice 

connectivity. However, it also creates new challenges for network slices, e.g., UE mobility may need to be 

handled by the slice provider as part of the slice setup and maintenance.  

Network slice requests brokerage: Network slicing in 5G networks enables a new ecosystem in which 

different tenants issue requests to an infrastructure provider for acquiring network slices. Since spectrum is 

a scarce resource for which overprovisioning is not possible, applying an “always accept” strategy for all 

incoming requests is not feasible. This calls for novel algorithms and solutions to allocate network resources 

among different tenants, allowing an infrastructure provider to accept or reject network slice requests with 

the objective of maximizing the overall utility. 

C. Network Slicing Applications and Profitability 

This section highlights the major applications where the slicing concept is expected to play a key role in 

future networks, along with a profitability assessment as seen through the lens of the operator. 

1) Slicing Applications: Smart Factory and the Tactile Internet 

Two exemplary applications for network slicing are “smart factory” industrial communications and the “Tac-

tile Internet”. In both cases, wireless communication conveys force (or “kinaesthetic”) information to a client, 

and in the Tactile Internet case especially touch sensations such as texture might be conveyed. The purpose 

of these applications is to achieve the touching or manipulation of remote real or virtual objects by a human 

or machine. If kinaesthetic information is conveyed to a machine client, the latency requirement might cor-

respond to the challenging 1ms in 5G. For human clients, this is relaxed to around 5ms, or more than 100ms 

for tactile information alone conveyed to humans. Both applications also require extremely high reliability 

and security requirements, noting the mission-critical characteristics associated with them. 



 3 

Network slicing can address the latency, reliability and security requirements of these applications. Referring 

to the remote surgery example shown in Figure 1, virtualization allows the instantiation of network elements 

at appropriate locations for the communication to proceed as close to a direct path as possible, reducing 

propagation delay hence latency. The instantiation of virtualized elements collectively forming network 

slices allows multiple instances of such applications to viably share available computational and other re-

sources end-to-end, making virtualization viable from a management point of view. Slicing also assists reli-

ability through the reservation of hardware and other resources as distinct slices, even in some cases poten-

tially down to spectrum resources. Security can benefit through slicing, e.g., tenant isolation and “sandbox-

ing” capabilities. Furthermore, slices may only be operated locally within a factory in order to ensure data 

privacy while its operation is coordinated with slices operated by public MNOs offering Internet services or 

specific network functionality such as mobility management. 

 

Figure 1: Virtualized edge network slices achieving a more direct path compared with (fixed) network elements in a Tac-

tile Internet remote surgical operation example. 

2) Slicing as a Means to Increase Network Revenue  

Beside the flexibilities provided by network slicing, it is also important to demonstrate the economic profit 

of applying network slicing from the MNO’s perspective. The cost in terms of Capital Expenditures 

(CAPEX) and operation expenses (OPEX) of a network is often much higher in comparison to the revenue 

expected by the operators. One reason for low revenue is underutilization of the network. According to the 

KPI requirements, different use cases may have highly specified resource demands. Nevertheless, in the cur-

rent framework, the operator can only provide the network with an unspecified resource bundle for general 

utilization. Hence, most of the resources are often reserved for use cases with only slight demands on them, 

and are thus wasted. With network slicing, the MNOs are able to efficiently analyze the operational cost and 

revenue generated from the respective slice. According to the analysis, they can allocate different network 

resource bundles to different slices, which makes the resource management much more structured, flexible, 

and efficient. As a result, the very same network can be utilized to seamlessly provide more and better ser-

vices, i.e., generate more revenue without any increase in CAPEX.  

Moreover, concepts such as cooperative slicing and inter-operator network sharing can be efficiently imple-

mented by optimizing the network cost model for increasing the overall revenue, and simultaneously provid-

ing network scalability. For example, the sliced network of an operator A is serving several services and still 

has few resources unutilized. Hence, the network can implement another slice that requires less resources but 

more coverage area, and might belong to another operator B. The moderated approach of implementing slic-

ing is beneficial for both the operators for providing more services without increasing CAPEX while simul-

taneously generating revenue from the unutilized resources. Hence, the network provider needs a new algo-

rithm, e.g., based on a threshold-rule, that allows him to decide whether to accept or reject an incoming 

network slice request while maximizing its revenue. 
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D. Related Work  

A simplified network slice concept has been exhaustively studied in the literature, wherein dedicated portion 

of RAN elements are fully reserved to particular services such as an “isolated slice.” However, with the 

advent of advanced network virtualization techniques, the notion of network slicing in 5G has evolved to 

more flexible sharing, aiming to attain a significant multiplexing gain while still guaranteeing isolation and 

separation. The Network Virtualization Substrate (NVS) was introduced in [2], allowing the infrastructure 

provider to control the resource allocation towards each virtual instance of an eNB before each virtual oper-

ator customizes scheduling within the allocated resources. In [5], relevant technologies for network slicing 

are discussed with particular focus on synchronous functions, e.g., multi-dimensional resource management, 

dynamic traffic steering, and resource abstraction. A particular architecture for network slicing has been 

introduced and discussed in the context of the 5G NORMA project [6]. Another network slicing solution 

considering a gateway-based approach is illustrated in [7], wherein a controller provides application-oriented 

resource abstraction of the underlying RAN. A capacity broker for slice resources has been introduced firstly 

by the 3rd Generation Partner Project (3GPP) and extensively evaluated in [8] by enabling the on-demand 

slice resource allocation. The infrastructure provider instantiates a network slice by allocating specific re-

sources to a mobile virtual network operator (MVNO), service providers, and vertical segments for a speci-

fied time duration. A study that explores the different options of network sharing based on a centralized 

broker is provided in [9] considering mobility means for re-directing users to other networks, spectrum trans-

fer policies, and the application of resource virtualization. Finally, [10] discusses a dynamic slicing scheme 

that flexibly schedules radio resources based on the requested Service Level Agreement (SLA), while max-

imizing the user rate and applying fairness criteria.  

E. Our Contribution 

This work elaborates on the fundamental pillars for an efficient utilization of the concept of network slicing 

in mobile networks, based on the mobile network architecture framework investigated in the research project 

5G NORMA [5]. Particular focus is put on the basic architectural principles for accommodating network 

slicing in the 5G ecosystem as well as on RAN and core network (CN) aspects. In this regard, we underline 

the key elements that enable the coexistence of dedicated and shared slices within a common network archi-

tecture, and elaborate on the implementation of the notion of network slicing in the RAN and in CN, putting 

particular emphasis on the concept of Software Defined Mobile network Control (SDMC).  

II. MOBILE NETWORK SLICING ARCHITECTURE 

A. Dedicated and shared sub-slices  

Network slices operate on top of a partially shared infrastructure, which is composed of generic hardware 

resources such as Network Function Virtualization Infrastructure (NFVI) resources, as well as dedicated 

hardware such as network elements in the RAN. Network functions running on NFVI resources (referred to 

as virtual network functions (VNFs)) are typically instantiated in a customized manner for each network 

slice. However, this approach cannot be applied to network functions (NFs) relying on dedicated hardware. 

Therefore, a key issue for network slicing is the identification and design of common NFs, which are either 

physical or virtual and which have to be shared by multiple end-to-end slices. 

Examples for common NFs include distributed, monolithic eNBs or the radio scheduler in the RAN domain. 

In the CN domain, candidates for shared VNF instances include Home Subscribe Server (HSS) or mobility 

management. Generally, three solution groups are discussed with varying levels of common functionality in 

3GPP standards [11]: Group A is characterized by a common RAN and completely dedicated CN slices, i.e., 

independent subscription, session, and mobility management for each network slice handling the UE. Group 

B also assumes a common RAN, where identity, subscription, and mobility management are common across 

all network slices, while other functions such as session management reside in individual network slices. 

Group C assumes a completely shared RAN and a common CN control plane, while CN user planes belong 

to dedicated slices. 

https://www.researchgate.net/publication/308847785_AppRAN_Application-oriented_radio_access_network_sharing_in_mobile_networks?el=1_x_8&enrichId=rgreq-848b07e77aa4f79da9bdeada2c52c0f9-XXX&enrichSource=Y292ZXJQYWdlOzMxMzg1MzExMjtBUzo0Njc4NjY4MTUzNDA1NDRAMTQ4ODU1OTU0OTEzOQ==
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 5 

In line with the above grouping considered by 3GPP [11], the framework of the 5G NORMA project [5] 

introduces dedicated network functions, which together form a dedicated sub-slice and are controlled by the 

Software-Defined Mobile network Controller (SDM-C). As illustrated in Figure 2, shared network functions 

are aggregated in common sub-slices that are controlled by the SDM Coordinator (SDM-X), reflecting the 

fact that these functions have to coordinate and, if necessary, prioritize the Quality of Service (QoS) require-

ments of multiple slices. 

 

Figure 2: Combining dedicated and shared sub-slices to form e2e mobile network instances 

  

B. End-to-end network slicing: Common and dedicated network functions 

When sharing NFs and resources between distinct network slices, a central entity in charge of managing and 

controlling the process is needed, i.e., the SDM-X. This entity ensures to attain high resource efficiency while 

guaranteeing individual SLAs. Based on the SDMC paradigm, this entity resides on the common control 

layer; it also includes NFs, either virtual or physical, that the network slices rely on. While a fixed splitting 

of common NFs (and resources) simplifies the network management and operation, it may lead to an ineffi-

cient network utilization. Conversely, dynamic adjustments of common resources might bring multiplexing 

gains at the expense of less determinism. Hence, the main objective of the SMD-X is to properly administer 

the trade-off between flexible and static resource assignments, by taking into account sharing policies set by 

the service provider. 

Let us consider the system spectrum as a shared resource pool (divided into several resource blocks (RBs)) 

fully managed by the SDM-X. The flexibility introduced by the SDM-X enables dynamic and short-term 

scheduling decisions based on slice requirements. Specifically, the SDM-X facilitates a “masked” view of 

the shared resource pool towards the network slices. The resource mask is defined as a group of physical RBs 

dynamically assigned to each network slice. The advantage of such solution relies on the SDM-X channel 

monitoring phase and on the subsequent dynamic adjustment of slice resource masks, needed to cope with 

the fast channel dynamics. In a multi-tenancy context [5], a dedicated resource scheduler per tenant may be 

directly connected to the SDM-X interface, acting as an SDN application. The scheduler uses the slice re-

source mask and applies its own scheduling policies, while preserving slice isolation constraints. The SDM-X 

plays a key role in assigning priority to network slices: Different objective functions can be dynamically 

implemented in order to achieve fairness, maximize spectral efficiency, and mitigate interference. 
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III. IMPLEMENTATION OF RAN AND CN SLICING 

A. Realization of Network Slicing in CN and RAN 

Figure 3 illustrates how RAN slicing can be realized such that existing and well-proven principles of radio 

access are utilized. In this regard, the network slice selection function (NS-SF), which is part of the SDM-X 

concept (c.f. Figure 2), is responsible for selecting the appropriate slice per user. In addition, it configures 

the RAN-CN interface such that the control and user plane traffic is routed to the accordingly configured 

functional elements in the CN slice. The user plane anchor (UP-Anchor) is responsible for distributing the 

traffic according to the configured slice policy, and for encryption with slice-specific security keys. 
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Figure 3: Multi-connectivity anchor – The interface between Network slicing and RAN 

 

Radio resource management and control in the base station, and correspondingly in the UE if several slices 

are configured, is responsible for configuring the RAN protocol stack and QoS according to the slice require-

ments. For example, for a slice with high throughput requirements, radio bearers are configured to support 

multi-connectivity (MC), e.g., similar to the split bearer approach as in LTE dual connectivity or in the equiv-

alent in 5G. For slices with low-latency and high robustness requirements, lower frame error rates as well as 

multi-point diversity techniques may be utilized.  

In the example illustrated in Figure 3, the radio flow in network slice A, which could correspond to a radio 

bearer in LTE, is configured with two radio connections, while network slice B is configured with only one 

connection according to the provided policy configuration. In summary, network slicing can be realized by 

appropriate mapping control and configuration of radio network functions without changing fundamental 

paradigms of the RAN.  

B. Multiplexing network slices in RAN  

The RAN is a typical example of a shared network function controlled by a single authority, where spectrum 

is shared amongst mobile virtual network and service operators. Figure 4 illustrates an example of a common 

spectrum shared by three network slices, each with own RAN and CN part. The layer 2 Control-plane is split 

into cell related functions which are common to all slices, and session or user specific radio resource control 

(RRC). Depending on the underlying service, RRC can configure and tailor the User-plane protocol stack. 

For example, for a slice supporting low delay services IP and related Header Compression (HC) may not be 

used, and RLC can be configured in transparent mode. In contrast, for services requiring QoE and excellent 

QoS, IP as well as acknowledged RLC must be initiated. In addition, there would be the possibility to chain 

proprietary and operator specific functions within a network slice. In this regard, the intra-slice application 

scheduler (which prioritizes sessions within the related slice) is chained in RAN slice 1, while the inter-slice 

radio scheduler (which schedules different slices) resides in the common RAN part (c.f. Figure 4) and makes 

use of multi-service scheduling capabilities. Multi-service scheduling is part of a flexible RAN and provides 
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the capabilities to differentiate traffic classes and to assign resources according to QoS requirements. Hence, 

service flows from different slices can be individually treated, e.g., flexible numerologies can be used to fulfil 

QoS constraints and even semi-persistently reserved resources for deterministic traffic requirements. 

Different parameterization of PDCP, RLC, 

MAC, and PHY per slice.

RLC’’: non-real-time functions of RLC

RLC’: real-time functions of RLC
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Figure 4: Example of common spectrum shared by multiple slices 

 

It is worth mentioning that, although the higher RAN layers can be configured to operate in a slice-specific 

mode relatively easily, this is not the case for the lower-layer radio interface. In contrast to current 3GPP 

LTE, where radio slices are represented by new variants of 3GPP such as Narrowband-IOT (NB-IOT), 5G 

requires the inherent coexistence of diverse services. Hence, in contrast to 4G LTE where adding a new radio 

slice requires modification to the legacy LTE radio, the new radio proposed for 5G is designed to be forward 

compatible [11], among others by utilizing new radio framing and protocols. This means that future addition 

of new services and thus radio slices will not require changes in the 5G radio framework.  

In a similar context, it is worth pointing out that the new radio framing involves the so-called “tiling” concept 

[12]. That is, time and frequency resources of the new 5G radio are tiled so that it can be allocated for the 

needs of certain slices with given requirements. An illustration of the tiling concept is provided in Figure 5. 

https://www.researchgate.net/publication/298796343_A_flexible_5G_frame_structure_design_for_frequency-division_duplex_cases?el=1_x_8&enrichId=rgreq-848b07e77aa4f79da9bdeada2c52c0f9-XXX&enrichSource=Y292ZXJQYWdlOzMxMzg1MzExMjtBUzo0Njc4NjY4MTUzNDA1NDRAMTQ4ODU1OTU0OTEzOQ==
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Figure 5: The radio tiling concept proposed for 5G radio with network slicing 

 

C. Exemplary architecture with shared RAN slices 

An exemplary architecture with shared RAN slices is presented in Figure 6a), which shows how the different 

aspects may integrate, based on three options [13]: 

1) The first option (Option 1) shows two network slices where each slice carries two different services. 

Each slice may be operated by a different mobile network operator (MNO). Furthermore, for each 

slice an individual RAN protocol stack is implemented down to the upper part of the physical layer. 

Only the lower part of the physical layer is shared across slices. The multiplexed access to the tran-

sponder part of the physical layer (PHY-TP) is coordinated by the SDM-X which makes use of flex-

ible and efficient radio resource management for supporting different numerologies within the same 

spectrum. One could think of Option 1 as implementing all user-specific functions such as forward 

error correction encoding, layer mapping and precoding in an individual fashion, while TP-specific 

functionality such as transmission of synchronization and cell-specific reference signals are shared. 

 

2) Option 2 depicts again two network slices from two operators. Compared to the previous example, 

each slice uses an individual implementation of service-specific functionality such as PDCP, RLC, 

and slice-specific RRC. In addition, the tenant may implement a customized QoS scheduling to per-

form pre-scheduling. The access to the MAC layer is then controlled by the SDM-X where resource 

fairness across tenants and QoS guarantees corresponding to individual SLAs must be met. Further-

more, resource isolation must be provided to alleviate side-effects. 

 

3) Option 3 illustrates the case of two operators using the same RAN as shared resource, i.e., the SDM-

X is the interface between CN and RAN. In this example, no customization of radio resource man-

agement beyond SDM-X parameters and configuration would be possible. 

 

D. Flexible RAN Technologies as Enablers for Shared RAN 

In addition to the flexible architecture considerations mentioned above, further flexible RAN technologies 

enable a shared RAN for network slicing and accommodating highly diverse services. In the following, some 

of them are briefly explained and how they facilitate network slicing. 
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Multi-connectivity (MC): The term RAN MC refers to the versatile scenario where a UE connects to the 

network via multiple cells. For the sake of the current explanation, it suffices to consider that a multi-con-

nectivity approach takes place whenever the connection of the UE to the RAN involves multiple PHY inter-

faces. Those multiple PHY interfaces are leveraged to deliver enhanced performance capabilities, which are 

translated into aggregated throughput or increased reliability. A major challenge is to enforce different QoS 

requirements, differentiation, and prioritization within a RAN exploiting MC and Multi-RAT through a sin-

gle scheduler.  

Next, we consider two MC options, namely the common PDCP and common MAC approach, which are 

shown in Figure 6b), as part of the exemplary architecture, Option 2, discussed in Section III-C. The common 

PDCP approach dictates that the PDCP layer of the protocol stack is shared between the individual connec-

tions of the RAN multi-connectivity (henceforth called “radio leg”), and all layers below PDCP are separate 

logical entities. Such approach resembles that of dual connectivity in 3GPP LTE, and offers the advantage 

of flexibility in terms of the physical location of the protocol stack layers. The main advantage of the common 

PDCP approach is the flexibility it offers in terms of the physical location of the protocol stack layers. In 

particular, since the interface between PDCP and RLC is not a time-critical interface, the common PDCP 

layer is not necessarily co-located with RLC, hence mobility-related signaling can be hidden from the CN. 

In the common MAC approach, the multi-connectivity anchor point is the MAC layer, similarly as carrier 

aggregation in 3GPP LTE. Owing to the time-critical interface between MAC and PHY, the common MAC 

approach requires that either the multi-connectivity legs originate from the same site, or they are intercon-

nected via a high-capacity transport link. Nevertheless, the common MAC approach offers the advantage of 

fast information exchange between the different multi-connectivity legs. This facilitates coordinated sched-

uling, interference mitigation, and other schemes related to MAC scheduling [14]. 

Multi-RAT and millimeter wave (mmW) technology: It is envisioned that mmW technology will play a 

key role in the fulfillment of 5G network requirements. MC will be essentially required to support mmW 

deployments, which are anticipated to cover both mobile broadband and machine-type applications. The de-

sign characteristics of such deployments will depend upon factors which span a wide area of architecture 

requirements, such as transport capabilities, low-band integration, propagation impairments and (edge or 

core) cloud implementations. Consequently, a flexible architecture incorporating mmW support is required 

to meet different slice requirements.  

User-centric signaling: A user centric signaling and mobility management for services including short, spo-

radic and delay tolerant data packets is proposed based on a User Centric Connection Area (UCA) [15]. The 

UCA consists of a set of radio nodes selected by the flexible 5G-RAN. One radio node acts as an anchor 

node within the UCA, which shares the user-context with all other nodes within the UCA. The CN connec-

tions (bearers) are terminated at the anchor node. With the help of a shared context, mobility is managed by 

the RAN instead of the CN as long as the UE moves within the UCA. This implies that mobility is hidden 

towards the core network, which reduces mobility and connection related signaling. Based on the context 

sharing, the UE is able to send UL packets and receive DL packets by any node within a UCA. The user 

specific aspect provides a flexibility and re-configurability in the realization of an UCA, i.e., each UCA can 

be configured according to specific requirements taking into account QoS parameters.  

Mobile edge computing and edge cloud processing: Advanced 5G services are envisioned to be offered at 

the network edge so as to reside much closer to the user in order to enhance delay and perceived performance, 

e.g., adopting the ETSI MEC paradigm1. Therefore, a flexible service chaining should also be improved to 

establish dynamic services considering edge network locations and might be combined with VNFs to ensure 

a joint optimization of services and networking operations. Edge server locations can also be exploited for 

                                                 
1 http://www.etsi.org/technologies-clusters/technologies/mobile-edge-computing 
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storage, computation, and dynamic service creation within a given network slice by verticals and over-the-

top providers, introducing another multi-tenancy dimension. 

IV. CONCLUSIONS AND FURTHER CHALLENGES 

An overview of the basic implementation features of network slicing was presented, along with its potential 

to provide revenue to the network operator. The analysis included the basic principles behind the mapping of 

dedicated and shared slices, as well as implementation-specific aspects when the concept of network slicing 

is employed over RAN and CN. Special focus was put on the connection of network slicing with RAN con-

cepts. Based on the above analysis, a strong potential of network slicing was revealed for addressing the 

diverse requirements of future 5G systems. Nevertheless, network slicing remains still at an early stage in 

terms of its development, hence one should anticipate a long way before it becomes a mature technology and 

thus be adopted by network standards. 
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