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Network Slicing is expected to become a game changer in
the upcoming 5G networks and beyond, enlarging the telecom
business ecosystem through still-unexplored vertical industry
profits. This implies that heterogeneous service level agreements
(SLAs) must be guaranteed per slice given the multitude of
predefined requirements.

In this paper, we pioneer a novel radio slicing orchestration
solution that simultaneously provides latency and throughput
guarantees in a multi-tenancy environment. Leveraging on a
solid mathematical framework, we exploit the exploration-vs-
exploitation paradigm by means of a multi-armed-bandit-based
(MAB) orchestrator, LACO, that makes adaptive resource slicing
decisions with no prior knowledge on the traffic demand or chan-
nel quality statistics. As opposed to traditional MAB methods
that are blind to the underlying system, LACO relies on system
structure information to expedite decisions. After a preliminary
simulations campaign empirically proving the validness of our
solution, we provide a robust implementation of LACO using off-
the-shelf equipment to fully emulate realistic network conditions:
near-optimal results within affordable computational time are
measured when LACO is in place.

Index Terms—5G-and-beyond, Virtualization, Network Slicing,
MAB, Latency Control, Resource Management

I. INTRODUCTION

The quest for new sources of revenue that revitalizes the
mobile industry has spawned an unprecedented hype around
the fifth-generation of mobile networks (5G) and, in particular,
the network slicing concept. Enabled by software-defined
networking (SDN) and network function virtualization (NFV),
network slicing allows telco operators to offer virtualized
slices of infrastructure resources on-demand to heterogeneous
3rd-party services [1]. A high-level view of the system consid-
ered in this paper is described in Fig. 1. The figure represents
a series of sliceable base stations as a pool of radio resources
(coloured cubes in the figure). The resource allocation process
is considered hierarchical: while bundles of radio resources
are assigned to different tenants (namely radio slices), each
tenant autonomously schedules its bundle of radio resources
to each individual user following classic radio scheduling

L. Zanzi is with NEC Laboratories Europe GmbH, Heidelberg, Germany,
and Technische Universität Kaiserslautern, Kaiserslautern, Germany. Email:
lanfranco.zanzi@neclab.eu.

V. Sciancalepore, A. Garcia-Saavedra are with NEC Laboratories Eu-
rope GmbH., Heidelberg, Germany. Emails: {vincenzo.sciancalepore, an-
dres.garcia.saavedra}@neclab.eu.

Hans D. Schotten is with Technische Universität Kaiserslautern, Kaiser-
slautern, Germany. Email: schotten@eit.uni-kl.de.
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Fig. 1: Illustration of the network slicing concept.

policies. The difference between such operations is subtle
but of paramount importance: a slice controller operates at
a larger timescale and thus over a coarser granularity [2],
[3]. While most prior work on network slicing focuses on
average bit-rate guarantees [3], [4], latency considerations have
received little attention. Latency aspects however are gaining
more and more attraction as a quest to face advanced use-
cases requirements, e.g., autonomous driving and platoon-
ing [5] in Vehicle-to-everything (V2X) enabled scenarios. In
this context, accurate resource allocation schemes and inter-
slice isolation aspects are fundamental features to support the
provisioning of latency-constrained services.

Given the plethora of works on classic radio scheduling [6],
[7], we keep this aspect out of the scope of this paper and we
focus instead on the former impelling need: a proper design
of an orchestration solution that autonomously assigns chunks
of radio spectrum (slices) in relatively larger time-scales
pursuing the goal of guaranteeing simultaneously latency and
throughput constraints. From the best of our knowledge, there
is a non-negligible lack of works focusing on both aspects
simultaneously in sliced-network environments.

To fill this gap, we design a LAtency-Controlled
Orchestrator (LACO), a network slice controller that
maps virtual radio resource allocations to physical resources
while still guaranteeing latency requirements1. Specifically,
LACO augments such prior work by accommodating
resources to (granted) slices such that latency agreements are
satisfied. This unlocks a new business opportunity for the
telco operators that may apply customized pricing models
according to the elasticity of offered slice latency constraints.

1Note that LACO does not compete with state-of-the-art throughput-only
slice controllers—in fact, we purposely assume the presence of an admission
controller that ensures that the aggregate load incurred by granted slices is
within the system capacity region.
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Technical challenges. While designing LACO, two sources
of uncertainty need to be under control: i) the behavioral
dynamics of the (aggregated) demand across involved tenants
and ii) the inherent randomness of the wireless channel. These
system dynamics have been traditionally modeled via either
complex solutions that are hard to solve in realistic settings or
via simplistic assumptions at the expense of low performance
figures. In our work, we explore a novel approach by designing
a scheme that learns the implications that allocation decisions
have on per-slice latency without explicitly making assump-
tions on the underlying dynamics. To this aim, we first model
our decision-making problem as a Markov Decision Process2

(MDP), which allows us to neglect low-level details of the
tenant demands and channel dynamics while letting us retain
some knowledge on the consequences that a given action may
have on the most immediate next system state.

An MDP model helps us to fully explore the problem
features. However, the process of learning the state transition
probability matrix of each of the embedded Markov chains in-
curs in prohibitive overhead as a reinforcement learning agent
has to explore the whole space of state-action trajectories—
the so-called curse of dimensionality. To address this, we
resort to a Multi-Armed Bandit (MAB) model where the
attained reward depends only on the action taken from a
bounded set of possible actions. Importantly, in contrast to
traditional MAB methods, LACO is model-aware (though
not model-dependant), i.e., it exploits (abstracted) information
regarding the underlying system to expedite the selection of
highly rewarding actions, which is particularly attractive when
dealing with dynamic non-stationary scenarios.

The main contributions of our paper can be summarized as
follows:
• We introduce a Discrete-Time Markov Chain (DTMC)

model to capture the dynamics of the (instantaneous)
aggregate slice traffic demand and the wireless channel
variations.

• We present a latent variable regression model to accu-
rately anticipate the transition probability matrix of the
proposed DTMCs.

• We formulate the dynamic slice resource provisioning as
a Markov Decision Process (MDP).

• We design a model-aware Multi-Armed Bandit (MAB)
method to guide the decision-making process, which
relies on the above DTMC models and anticipated tran-
sition probabilities to speed up convergence.

• We present an exhaustive simulations campaign to assess
the performance of our approach.

• We implement and field-test our solution using off-the-
shelf equipment that emulates real network conditions:
LACO shows its innovative performance gain against
considered legacy techniques.

The remainder of the paper is structured as follows. Sec-
tion II formulates our problem and presents the main building
blocks of LACO. Section III introduces an DTMC model

2With a little misuse of nomenclature, we will refer to Markov Decision
Process (MDP) rather than Semi-Markov Decision Process (SMDP) despite
considering continuous time scales.

that helps us expedite the action-space exploration phase and
Section IV deeply analyzes it. In Section V, we introduce our
decision process as a Markov Decision Process (MDP) and
present a model-aware Multi-Armed Bandit decision-making
engine integrated in LACO. Section VI presents our prelim-
inary simulation campaign to validate the design principles
of LACO, whereas Section VII details the implementation of
our novel solution into off-the-shelf equipment with realistic
network performance. Finally, Section VIII summarizes related
literature and Section IX concludes the paper with some final
remarks.

II. LACO: THE FRAMEWORK OVERVIEW

Our solution relies on the concept of slicing-enabled net-
works wherein multiple network tenants are willing to obtain a
network slice with predefined service level agreements (SLAs).
Such SLAs may be expressed in terms of maximum slice
throughput and average access latency. Within the context
of our paper, we define the average access latency as time
the traffic belonging to a certain slice needs to wait before
being served due to scheduling procedures. In particular,
we focus on the radio access network (RAN) domain and
design LACO, a RAN controller that dynamically provisions
spectrum resources to admitted network slices while providing
latency guarantees. In the following, we overview the main
system building blocks with detailed notation and assumptions.

A. Business scenario

We consider different entities in our system: i) an infras-
tructure provider owning the physical infrastructure who offers
isolated RAN slices as a service, ii) tenants who acquire and
manage slices with given SLAs to deliver services to end-
users, and iii) end-users, who demand radio resources from
such tenants/slices.

Let us define I as the set of running network slices and Ui
as the set of end-users associated to the i-th slice. The total
amount of wireless resources (radio spectrum) is split into
multiple non-overlapping network slices, each one belonging
to one single tenant i ∈ I.3 Based on fixed SLAs, each
network slice is characterized by maximum throughput and
expected latency denoted by Λi and ∆i, respectively. We
assume that an admission control process4 is concurrently
running on a higher tier so that the average aggregate load
can be accommodated within the overall system capacity.

B. Notation

We use conventional notation. We let R and Z denote the
set of real and integer numbers. We use R+, Rn, and Rn×m to
represent the sets of non-negative real numbers, n-dimensional
real vectors, and m×n real matrices, respectively. Vectors are
denoted as column vectors and written in bold font. Subscripts

3We assume a one-to-one mapping between slices and tenants. Therefore,
we use i ∈ I interchangeably throughout the paper as a tenant identifier or its
associated slice. Note that this assumption can be easily relaxed in the model.

4Given the plethora of solutions in the literature, the admission control
design is out of the scope of this work. We refer the reader, for example,
to [2], [4] for more details.
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represent an element in a vector and superscripts elements in
a sequence. For instance, 〈x(t)〉 is a sequence of vectors with
x(t) = [x

(t)
1 , . . . , x

(t)
n ]T being a vector from Rn, and x(t)

i the
i’th component of the t’th vector in the sequence. Operation
[·]T represents the transpose operator while [x1, . . . , xn]diag
translates the vector into a diagonal matrix. Last, 1 and 0
indicate an all-ones and all-zeroes vector, respectively, and d·e
is the ceiling operation.

C. Problem Definition

Assuming that an instance of LACO is executed per base
station (BS) as shown in Fig. 1, we focus our problem design
and performance evaluation on a single BS characterized by a
capacity C, which is the sum of a discrete set of available
physical resource blocks (PRBs) of fixed bandwidth. This
resource availability must be divided into subsets of PRBs
(i.e., slices), and our job is to dynamically assign such subsets
to each network slice i ∈ I. We refer to such assignment as the
configuration of slice i, denoted by the variable yi. Obviously,
we shall guarantee

∑
i∈I yi ≤ C. For the sake of clarity,

we summarize all mathematical variables used throughout the
paper in Table I.

We consider a time-slotted system where time is divided
into decision epochs n = {1, 2, . . . , N}. The decision epoch
duration ε may be decided according to the infrastructure
provider policies, ranging from few seconds up to several
minutes. While the admission controller (pre-)selects a subset
of slices that can co-exist without exceeding the capacity of
the system in average, the dynamic nature of the slice’s load
and wireless channel may cause instantaneous load surges or
channel quality fading effects and hence induce a non-zero
mean delay.

We denote the experienced instantaneous signal-to-noise
ratio (SNR) of slice i (averaged out across all users of the
slice) and the instantaneous aggregate traffic demand within
time-slot n as γ

(n)
i and λ

(n)
i , respectively. As each tenant

i may show different behavior in terms of wireless channel
evolution (according to θi) and traffic demands (according to
ρi), we also assume γ(n)

i and λ
(n)
i are drawn from different

univariate probability density function, i.e., γ(n)
i ∼ f(x, θi)

and λ
(n)
i ∼ f(x, ρi). Importantly, we do not assume any

knowledge on such random variables; we exploit machine
learning techniques to learn the inherent channel and demand
models, which allow our system to dynamically adapt the slice
configurations y(n)

i at every decision epoch n while mitigating
latency constraint violations.

Formally, the above-described problem becomes:

Problem LATENCY-CONTROL:

minimize lim
N→∞

N∑
n=1

E

[∑
i∈I

r
(n)
i

]
subject to E

[
λ

(n)
i

ζ
(
y

(n)
i ,γ

(n)
i

)
+r

(n)
i

]
≤ ∆i, ∀i ∈ I;∑

i

y
(n)
i ≥ C, ∀n;

y
(n)
i , r

(n)
i ∈ Z+, ∀i ∈ I;

Fig. 2: Workflow illustration.

where ζ(·)(n) is a mapping function that returns the number
of bits that can be served using the allocated number of PRBs
(y(n)
i ) and the current SNR level γ(n)

i , as per [8, §7.1.7].
The traffic demand might not be satisfied within a single
decision epoch incurring in packet queuing and additional
delay. Therefore, in our formulation we introduce r

(n)
i as a

deficit value indicating the number of bits not served within the
agreed slice latency tolerance ∆i during the time-slot n (i.e.,
dropped). The objective of Problem LATENCY-CONTROL is
hence to find a sequence of 〈y(n)

i 〉 configurations such that
the expected total non-served traffic demand is minimized.
Hereafter whenever is evident from context, we drop the
superscript (n) to reduce clutter. To address the problem, we
rely on a two-layer scheduling approach commonly adopted in
the network slicing context [3], [9]. On the one side, an inter-
slice scheduler is in charge of defining the PRB allocation
strategy to meet the networking requirements while ensuring
resource isolation among slices. On the other side, a lower
layer intra-slice scheduler enforces the assignment of the pre-
allocated subset of PRBs to the connected end-users. Our
work mainly focuses on the higher-level inter-slice scheduler,
leaving the implementation of intra-slice scheduling strategies
open to address tenant-specific requirements.

D. Working flow

For a given slot n, problem LATENCY-CONTROL can be
easily linearized5 and solved with standard optimization tools.
However, this approach may exhibit sub-optimal behavior in
future epochs if the statistical distributions of f(x, θi) and
f(x, ρi) are not stationary. Hence, we propose a novel two-fold
approach that: i) models channel and traffic demand variations
based on previous observations, and ii) iteratively applies slice
settings towards the goal of honouring SLAs.

Fig. 2 depicts the building blocks of our solution. LACO
relies on the concept of Markov Decision Process (MDP)
as described in Section V to decide which configuration yi
should be enforced to all active slices i, adapting its choice
at every epoch n according to the observed reward function
that measures the incurred latency. In turn, this information
is asymptotically calculated within Discrete-Time Markov
Chain (DTMC) model described in Section III. The transition
probabilities of such DTMC are updated according to previous

5Function ζ(·) can be easily approximated with a linear function by
applying piece-wise linearization.
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TABLE I: Notation table

Notation Description Notation Description Notation Description
yi Slice configuration zσ Arm selection freq. φ ∈ Φ Action index
n ∈ N Decision epoch index Ni(µi, ν2

i ) Normal distribution ω(·) Latent var. weight
ui ∈ Ui User index m ∈M MCS index R(·) Reward function
d ∈ {0, 1} Exceed delay flag i ∈ I Slice index ψ(σ) Accuracy value
λ

(n)
i Inst. traffic demand r

(n)
i Bits not served Li Latency constraint

f(x, ρi) Traffic demands distr. ūi Aggregate user Γm Bits per subframe
ζ(·)(n) Throughput mapping g ∈ G Channel level f(x, θi) Channel distr.
σ ∈ Σ MDP state index γ

(n)
i Inst. SNR ∆i Latency tolerance

w ∈ W (Latent) Channel quality C Capacity of BS τ Rayleigh scale param.
T (·) Transition function ε Decision interval duration Θ PRB chunk

observations in the Monitoring and Prediction of Channel
Variations module, described in Section IV.

III. DTMC MODEL

Hereafter, we analyze the system dynamics through a
Markov Chain-based (MC) model that computes expected
channel conditions and violations on latency tolerance. It
should be noted that channel variations and traffic demands
are independently obtained according to each slice, thus each
DTMC may be treated individually without the need to setup a
Markov chain accounting for the overall system configuration.
Such global DTMC could anyway be easily obtained as
linear combination of the individual DTMCs. For the sake
of tractability, we consider a single (virtual) user ūi with
an aggregate traffic demand resulting from the set of users
ui ∈ Ui belonging to slice i.6 We also assume a finite
number of channel quality levels G, which may bound each
instantaneous user channel quality γi, as depicted in Fig. 3.
This is a system design choice and allows operators to trade off
high accuracy for convergence speed, by ranging from a fine-
grained scale (large G), e.g. by letting each channel quality
level be equal to the modulation and coding scheme (MCSs)
as defined in the 3GPP standard document [8], to a coarse-
grained scale that may capture the channel variation behaviors
with limited accuracy, as detailed in Section IV.

Let us consider a discrete-time stochastic process Xt
7 that

takes values from a finite and discrete state space, which
is denoted by S = {S0,0, . . . , Sg,d, . . . , SG,1 | 0 ≤ g ≤
G, d ∈ {0, 1}}.8 In particular, a realization of Xt when visiting
state Sg,d represents virtual user ūi experiencing channel
level g ∈ G with an associated delay exceeding the one
specified by the slice SLA (d = 1) or otherwise (d = 0).
When considering wireless channel conditions as Rayleigh
distributed, it is common practice to model the variations
as a sequential visiting of consecutive states, as the channel
does not vary faster than the Markov chain time-slot [11].
Hence, we define the probability to improve the user channel
condition from level g to level g + 1 as pg,g+1 whereas
the probability to get a bad channel from level g to level
g − 1 as qg,g−1. As shown in recent works like [12], [13],

6This assumption can be readily relaxed by considering the convolution
of single cumulative distribution functions of every user channel and demand
variation [10].

7The time scale t of DTMC state switch is much shorter than the decision
epoch n used in the MDP described in Section V.

8Each DTMC is defined within a state space Si. We remove the index i
to limit the clutter, as the analysis can be easily extended to any other slice.

Fig. 3: Radio channel variations as Markov chain.

accurate scheduling strategies might mitigate the interference
effects coming from multiple base stations serving the same
sets of slices thus improving the overall channel conditions.
However, such schemes introduce additional complexity and
synchronization overhead, which hardly fit with our view of
a lightweight base station oriented solution. Last, given the
available physical resource blocks assigned to a particular slice
yi, the channel quality level g and the overall traffic demand
within the time-slot, we model the probability to incur in delay
constraint violation as mg and the probability to keep the
access delay within the agreed bound as lg . This process can
be formulated as a two-dimensional DTMC M := (S, P ),
where P denotes the following transition probability:

P =

∣∣∣∣∣ Km M

L Kl

∣∣∣∣∣ ,where Kx={m,l} = {k(x)
ij } (1)

with k(x)
ij =


1− pi,i+1 − qi,i−1 − xi if i = j,
qi,j if i = j + 1,
pi,j if i = j − 1,
0 otherwise;

and M = {mi}diag, L = {li}diag.

Note that we assume pG,G+1 = q1,0 = 0 and each square
block Kx={m,l},M and L with [G×G] size so that the
square matrix P has dimension [2G× 2G]. Without loss of
generality, we assume that such transition probabilities do not
depend on the particular time-slot we are evaluating. Thus,
we define our DTMC as a time-homogeneous MC where the
process Xt evolves based on Π(t) = Π(0)P t where the row
vectors Π(t) and Π(0) represent the first order state probability
distribution at time n and 0, respectively. In order to evaluate
the long-term behavior of our system, we need to calculate
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the steady-state probability Π∗ = {π∗s} of being in each of
the defined states. It yields that

Π∗ = lim
n→∞

Π(t) = Π(0) lim
n→∞

P t = Π(0)P ∗. (2)

The above-described Markov chain is irreducible, as each
state may reach through available paths any other state. There-
fore, by stochastic theory, if a Markov chain is irreducible
and non-periodic, the steady-state probability distribution Π∗

always exists, is unique and is independent from the initial
conditions.

Recalling the total probability theorem and using Eq. (1),
we calculate the steady-state probability distribution as the
solution of the following equations{

(PT − 1diag) Π∗ = 0

1 Π∗ = 1

(3)

where 1diag is the identity matrix.

IV. DTMC MONITORING AND PREDICTION

The asymptotic behavior of a Markov chain depends on the
transition probability matrix P , which in turn depends on the
stochastic processes of the slice traffic demands and wireless
channel variations. While several models have been already
defined in the literature to derive such probabilities [14],
the latency control objective and the need of an accurate
estimation exacerbate the problem and render model-fitting
approaches impractical. This brings additional complexity and
delay the convergence process to the optimal solution.

We apply the concept of unsupervised learning to estimate
the transition probabilities based on previous observations. In
particular, we rely on the well-known theory of probabilistic
latent variable [15]. Let us consider w ∈ W as the stochastic
latent variable denoting the current channel quality level.
Formally, we redefine the transition probability of the above-
described DTMC as

ρga,b = Pr(Xt = Sg,b | Xt−1 = Sg,a, g = w) (4)

that is the probability to move from state Sg,a to Sg,b when
the channel level is exactly g = w. To easily understand this,
note that ρg0,1 = mg , ρg1,0 = lg whereas ρg0,0 and ρg1,1 are
the probabilities to stay within the same state Sg,0 and Sg,1,
respectively. We use an expectation maximization technique
to estimate such probabilities. To this aim, we enumerate the
transitions between a and b upon g in hga,b based on the number
of times Xt switches to another state (or stays within the same
state) between t and t + 1. We then derive the a posteriori
probability as follows

Pr(g = w | Xt = Sg,b, Xt−1 = Sg,a) = (5)
Pr(Xt = Sg,b | Xt−1 = Sg,a, g = w)Pr(g = w)∑

z∈W
Pr(Xt = Sg,b | Xt−1 = Sg,a, g = z)Pr(g = z)

,

and the likelihood probability as the following

Pr(Xt = Sg,b | Xt−1 = Sg,a, g = w) = (6)∑
g∈G

hga,bPr(g = w | Xt = Sg,b, Xt−1 = Sg,a)∑
{α,β}∈{0,1}2

∑
g∈G

hgα,βPr(g = w|Xt = Sg,β , Xt−1 = Sg,α)

and

Pr(g = w) = (7)∑
{α,β}∈{0,1}2

hgα,βPr(g = w | Xt = Sg,β , Xt−1 = Sg,α)∑
{α,β}∈{0,1}2

hgα,β

The above system of equations can be solved using an iterative
method that yields ρga,b. Finally, we calculate the weight
of each latent variable based on a given set of previous
observations as per the following equation

ω(w | Ŝi) =

∑
{α,β}∈Ŝi ρ

w
α,β∑

g∈W
∑
{α,β}∈Ŝi ρ

g
α,β

, (8)

where Ŝi denotes the history of transitions (or lack thereof)
across Xt among different states belonging to level 0 or
1 in the DTMC depicted in Fig. 3. We can generalize the
probability to move from a state wherein the latency is under
control Sg,0 to a state incurring unexpected latency Sg,1, i.e.,
exceeding the threshold defined in the slice SLA, using the
following expression

ρa,b=Pr(Xt+1 =Sb|Xt = Sa, Ŝi) =
∑
w∈W

ω(w | Ŝi)ρwa,b. (9)

In the next section, we design a control-theory process by
means of a Markov Decision Process (MDP) that optimally
selects the best slice configuration yi based on the probability
to exceed the access latency constrained by the slice SLA.

V. MARKOV DECISION PROCESS

We model the decision problem as a Markov Decision
Process (MDP) defined by the set of states Σ = {σ}, the set
of actions Φ = {φ}, the transition function T (σ, φ, σ′), and
the reward function R(σ, φ). The set of states accounts for all
the radio resource splitting options among different tenants,
namely slicing configuration cσ = {y1, y2, . . . , yi, . . . , yI}
expressed in terms of PRBs, where

∑
i∈I yi = C, i.e., the

overall capacity is exactly split between running slices. We
assume that each slicing configuration is issued at every
decision epoch n. The transition function characterizes the
dynamics of the system from state σ to state σ′ through action
φ. Analytically, P (σ′ | σ, φ) is the probability to visit state σ′

given the previous visited state σ and the action φ. Finally,
the function R(σ, φ) measures the reward associated to the
transition from the current state σ performing action φ. We
shall consider an MDP with an infinite time horizon. Future
rewards will be discounted by a factor 0 < χ < 1 to ensure
the total reward obtained is finite.

When dealing with MDPs is common practice to define
a “policy” for the decision agent, namely a function P(n) :
Σ(n) → Φ(n) that specifies which action φ to perform at time
n when in state σ. As soon as the Markov decision process
is combined with a defined policy, this automatically fixes the
next action for each state so that the resulting combination
exactly behaves similarly to a Markov chain. The final aim
of the decision agent is to find the policy that maximizes the
expected total reward, or, equivalently, to discover the policy
P∗ that maximizes the value function.
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A. Reward Definition

Each state (or slicing configuration) is associated with a
reward value that influences the agent during the decision
process. The rationale behind is that we need to bind the action
reward to the probability of exceeding the latency constraints
defined in the slice SLA. In the following, we introduce
the reward function used in our experiments with a detailed
overview of its behavior.

Given a slicing configuration cσ = {yi | i ∈ I}, we can
analytically build a Discrete-Time Markov Chain, as described
in Section III. If the associated transition probability matrix
P is perfectly known, we can also derive the steady-state
probabilities Π∗ = {π∗s} to be within any single state using
Eq. (3). Thus, we can compute the probability to have the
access latency of our system under control. This can be used
to formulate the instantaneous reward value

R(σ(n), φ(n)) =

 ∑
s∈Sg,0

π∗s

η

(10)

where s is the index of all states Sg,0,∀g ∈ G such that the
slice latency is under control, whereas η ∈ [0, 1] is an ad-
justable value decided by the infrastructure provider to provide
action fairness in the reward function when η tends to 0, or
maximum likelihood of keeping latency under control when
η tends to 1. Then our objective is to maximize the expected

aggregate reward obtained as lim
N→∞

N∑
n=1

E
[
χnR

(
σ(n), φ(n)

)]
.

However, given the fully-connected structure of our Markov
Decision Process, i.e., all states are reachable from any MDP
state, our objective is equivalent to maximize the instantaneous
reward given by (10) at each decision epoch n.

Nonetheless, the assumption of perfect knowledge on the
transition probability matrix P might be not realistic. There-
fore, we need to rely on the transition probabilities ρa,b
inferred based on the previous observations, as explained in
Section IV, Eq. (9). The larger the set of observations, the
higher the accuracy of our probability estimation and the
higher the reward attained to the instantaneous best action
taken by the MDP.

B. Complexity analysis

Once we have fully characterized our proposed MDP, we
can solve it by using dynamic programming solutions such
as Value Iteration [16]. These approaches require exploring
the entire state space of the MDP (several times) and the
associated rewards. Let us consider a scenario with I online
slices running in our system. Assume that each slice configura-
tion yi can take values from integer multiples of a minimum
PRB chunk size Θ and that the slicing configuration must
be consistent, i.e.,

∑
i∈I yi = C. Then, we can calculate

the overall number of states equal to (CΘ +I−1)!

(I−1)!CΘ !
. This poor

state scalability, as well known as the curse of dimensionality,
compromises the feasibility of MDP models under practical
conditions. However, MDPs provide insights regarding the
structure of the problem itself and are very helpful to de-
sign ausiliary solutions, such as Multi-Armed Bandit (MAB)

models, which are better suited for functional deployments.
Therefore, in the next section we rely on a novel MAB design
that exploits information from the underlying MDP to expedite
the learning process while attaining near-optimal results.

C. Multi-armed Bandit problem

The online decision-making problem has been addressed
in the past with several mathematical tools [17]. The lim-
ited information about real-time channel quality and effective
traffic demand forces the operator to choose, like a gambler
facing diverse options to play, the number of radio resources
to assign to each running slice. This automatically falls in the
fundamental exploration-vs-exploitation dilemma: the gambler
needs to carefully balance the exploitation operations on
known slicing configurations that provided the best revenues
in the past against the exploration of new slicing configuration
that might eventually produce higher revenues.

This class of decision process can be formulated as a Multi-
Armed Bandit (MAB) problem, which emulates the action of
selecting the best (single) bandit (or slot machine) that may
return the best payoff. Each slot machine returns unpredictable
revenues out of fixed statistical distribution, not known a
priori, that is iteratively inferred by previous observations.
This matches well the randomness of the channel quality and
the traffic demand we aim to capture whereas each bandit can
be mapped onto a state of the MDP, i.e., a specific slicing
configuration. The final objective of such a problem is to
maximize the overall gain after a finite number of rounds.
This class of problems is usually assessed by a defined metric
called regret Ω, which is defined as the difference between
the reward that can be gained by an optimal oracle, i.e., using
an optimal policy that knows the reward distributions a priori,
and the expected reward of the myopic online policy.

Reusing notation from our MDP model, let us define each
arm σ ∈ Σ as a different slicing configuration cσ = {yi | i ∈
I}. Once selected, each arm provides an instantaneous reward
R(σ) defined as the following

R(σ) =
∑
i∈I

(
ζ(yi, γi)−

λi
∆i

)
(11)

where the slicing configuration is yi ∈ cσ , ζ(·) computes the
number of bits that can be served using yi configuration and
given the current channel quality γi, and λi is the slice traffic
demand, as described in Section II-C.

While using such reward function requires low overhead, as
it only needs to calculate the incurred latency after selecting
a slicing configuration, it only converges to a near-optimal
solution after exploring several configurations, which results
in overly long training periods (as shown in Section VI).
This is an inherent issue with classic MAB methods, which
are blind to the underlying system structure. Conversely, in
this paper we resort to a novel model-assisted approach that
exploits the system model of Section V-A to guide the explo-
ration/exploitation process with (abstract) system information.
In this way, as opposed to using the traditional reward model
of Eq. (11), we define our bandit’s reward as the expectation of
access latency exceeding slice SLA defined in Eq. (10). This
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Algorithm 1 LACO
1. Input: Σ, N,Ψ = {ψ(σ)}, I, ω, ε,S
2. Initialization: zσ , ρ̂σ = 0, ∀σ
3. Procedure:
4. for all n ∈ N do
5. if n = 0 then
6. for all σ ∈ Σ do
7. GET reward: ρ̂σ = R

(n)
σ

8. zσ = zσ + 1
9. end for

10. else
11. σ∗ = arg max

σ∈Σ
ρ̂σ + ψ(σ)

√
2 log

∑
k zk

zσ

12. UPDATE ρ̂σ∗ ← R
(n)
σ∗

13. zσ = zσ + 1
14. end if
15. for all TTIs ∈ ε do
16. for all i ∈ I do
17. UPDATE ω(w | Ŝi)← Si
18. end for
19. end for
20. UPDATE ψ(σ∗)← ω(·)
21. end for
22. End Procedure

has a two-fold advantage: i) during the initial training period,
the DTMC associated to each state of the MDP is updated
(and enhanced) with more accurate values of the transition
probabilities: this helps to find steady-state probabilities (and
in turn an updated reward per slicing configuration) that
reflect the real behavior of our system as time goes on;
and ii) the slicing configuration selection accounts directly
for stochastic behaviors of both channel quality and traffic
demand, while reducing the state space to those that may
benefit the entire system. Many algorithms have been proposed
to optimally solve the MAB while learning from previous
observations [18]. One of the main issues is that collecting
rewards on a short-time basis may negatively impact on the
decision of the best bandit. Thus, we rely on a modified version
of the so-called Upper Confidence Bound (UCB) algorithm
devised by [19] that overcomes this issue by measuring not
only the rewards collected up to the current time interval, but
also the confidence in the reward distribution estimations by
keeping track of how many times each bandit has been selected
zσ,n. The pseudo-code is listed in Algorithm 1.

Initially, we explore all bandits, i.e., slicing configuration
σ ∈ Σ, to get a consistent reward (line 2-6). Then we select
the best configuration that maximizes the empirical distribution
ρ̂σ accounting for a confidence value. This confidence value
depends on the number of times we have explored that par-
ticular configuration as well as the accuracy of the transition
probabilities we calculate for the associated DTMC. Note that
this is different to traditional UCB algorithms. Specifically,
we define a Markov accuracy value ψ(σ) = (

(
∑
w ω(w|Ŝi))2

W
∑
w ω(w|Ŝi)2

),
where W represents the cardinality of the set W . Note that
ψ(σ) depends on the weights ω(·) obtained through the
performed observations Ŝi, as reported in Eq. (8). Interestingly,
ψ(σ) ∈ (0, 1], i.e., when the DTMC has no relevant observa-
tions to build its transition probabilities this function returns
ψ(σ) = 1 whereas, when a relevant number of observations
allow to determine accurate transition probabilities, its value
tends to 0. The value of ψ(σ) is updated at the end of every

decision interval (line 20) after monitoring the effects of the
last decision on the Markov Latent variable distribution (lines
15− 19).

D. Regret analysis
Here, we mathematically calculate the bounds of our solu-

tion, LACO, for multi-armed bandit problems. Let us consider
a player selecting an arm σ ∈ Σ every decision epoch n. Every
time arm σ is pulled down, it returns a reward R

(n)
σ drawn

from an unknown distribution with mean ρ̄σ and empirical
mean value calculated until time n as ρ̂(n)

σ =
∑n
s=1 R

(s)
σ

n . We
denote σ∗ as the arm providing the maximum average reward
such that ρ̄σ∗ > ρ̄σ,∀σ 6= σ∗. If the arm selection is performed
using LACO, it yields that the regret is obtained as

ΩLACO
N (Σ) = Nρ̄σ∗ − E[

N∑
n=1

R(n)
σ | σ ∈ PLACO]

= Nρ̄σ∗ −
Σ∑
σ=1

ρ̄σE[z(n)
σ ]; (12)

where PLACO = {σn} is the policy as defined in Section V
that consists of a set of moves that LACO will play at time
n whereas zσ,n is the overall number of decision epochs arm
σ has been pulled down till time instant n. Now consider
LACO as a uniformly good policy, i.e., any suboptimal arm
σ 6= σ∗ is chosen by our policy up to round n so that E[zσ,n] =
o(nα),∀α > 0. It holds that

lim
N→∞

Σ∑
σ=1

N−1ρ̄σE[z(N)
σ ] = Σρ̄σ∗ . (13)

Hence, we can express the regret lower bound as the following

lim
N→∞

inf
ΩLACO
N (Σ)

logN
≥
∑

σ: ρ̄σ<ρ̄σ∗

ρ̄σ∗ − ρ̄σ
Div(ρ̄σ, ρ̄σ∗)

(14)

where Div(ρ̄σ, ρ̄σ∗) is the Kullback-Leibler divergence of
one statistical distribution against the other and it is used
to measure how one distribution might diverge from another
probability distribution.

Now consider the Hoeffding’s inequality for multiple i.i.d.
variables xn with mean µ. It yields that Pr(|

∑n
i=1 xi
n − µ| ≥

δ) ≤ 2e−2nδ2

. Our algorithm LACO applies an upper confi-
dence interval δ =

√
2 log σkzk

zσ
. Therefore, it yields that

Pr

|ρ̂σ,n − ρ̄σ| <
√

2 log
∑
k zk

zσ

 ≥ 1− 2

n4
(15)

and also that

Pr

(
P(n+1) = σ | z(n)

σ >
4 log n

ρ̄σ∗ − ρ̄σ

)
≤ 4

n4
. (16)

We can then derive the expectation of number of times sub-
optimal arm σ 6= σ∗ is pulled down as follows

E[z(N)
σ ] ≤ 4 logN

ρ̄σ∗ − ρ̄σ
+ 8 (17)

and the regret upper bound as the following

E
[
ΩLACO
N (Σ)

]
≤

∑
σ: ρ̄σ<ρ̄σ∗

4 logN

ρ̄σ∗ − ρ̄σ
+ 8 (ρ̄σ∗ − ρ̄σ) . (18)
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Fig. 4: Impact of different resource allocation chunk sizes.

VI. PERFORMANCE EVALUATION

In this section, we evaluate our solution through an exhaus-
tive simulation campaign that takes into account complexity,
revenue and SLA violation metrics.

A. Simulations setup

To assess heterogeneous slices, we simulate the network
load demand of slice i at each time-slot (i.e., each transmission
time interval (TTI) in Long Term Evolution (LTE) systems)
by extracting a random value from a Normal distribution
Ni(µi, ν2

i ), where µi and νi represent the mean value and
standard deviation, and let Li describe its latency constraint.
Moreover, we model the SNR channel variation as another ran-
dom variable drawn by a Rayleigh distribution and derive the
probability distribution encompassing the whole SNR range.
For every channel instantiation, we extract the corresponding
Modulation and Coding Scheme (MCS) as defined by the
3GPP standard.9 The MCS index m ∈M combines one possi-
ble modulation scheme and a predefined coding rate providing
a compact way to represent a simple concept: the better the
radio conditions, the more bits can be transmitted per time unit,
and vice versa. Fixing the channel bandwidth, the expected
average throughput achievable by one slice during one epoch
depends on both the modulation and coding schemes used
and, most importantly, on the number of PRBs reserved for
the slice. In a wider timescale 10, the average capacity can
be approximated as Ci =

(∑M
m Γmπm,i

)
Tiyi where Γm

represents the average number of bits per LTE subframe that
can be transmitted using the m-th MCS index, πm,i is the
steady-state probability distribution output of the first stage
Markov chain model, Ti defines the decision interval size, and
yi accounts for the number of PRBs allocated to the i-th slice.
We refer the reader to Table I. In the LTE radio interface, the
maximum amount of PRBs is fixed to 100 when operating at
conventional bandwidth values of 20 MHz. In order to support
massive type communication and Ultra-Reliable Low-Latency
Communication (URLLC) use-cases, the 5G New Radio (NR)

9We refer the reader to [8] for an exhaustive explanation of the mapping
between SNR and MCS.

10Note that we assume a timescale larger than our epochs used in the
decision-making process.
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Fig. 5: Cumulative dropped traffic due to latency constraints viola-
tions.

introduces significant enhancements in the radio frame compo-
sition. Not only 5G NR will support wider channel bandwidth
(up to 100 MHz), but also introduce the support for multiple
different types of subcarrier spacing. For back-compatibility
reasons, even in 5G NR the time duration of radio frames and
subframes are fixed to 10 ms and 1 ms, respectively [20]. The
number of slots within each subframe however would change
according to the subcarrier configuration, which eventually
translates in shorter PRB time duration and thus a different
PRB availability depending on the selected configuration. It
must be noticed that all the subcarrier spacing are defined
as ∆f = 2j · 15 KHz, j = {0, . . . , 4}, thus leading at the
definition of time-frequency grids containing an amount of
PRBs which is multiple of those contained in the traditional
LTE grids. In this context, we assume a simple mapping
function, as the one described in [21], implemented at intra-
slice scheduler to homogenize the resources of potentially
heterogeneous radio access technologies.

Traffic demands are compared with the current channel
availability to derive the possibilities to pass from one state to
another. It must be noticed that the accuracy of the resulting
steady-state distribution strictly depends on the precision of
such comparison. For this reason, we constantly monitor and
update the transition probabilities of the Markov chain based
on the resource allocation adopted in the current decision inter-
val. During the arm selection, if the chosen configuration does
not provide enough resources to meet the latency requirements,
the steady-states will be mostly distributed in the lower part
of the Markov chain leading to a minor reward that, in turn,
guides the MAB agent to take a different action (i.e., selecting
a different arm) in the following decision round.

For benchmarking purposes, we implement two widely
used MAB algorithms, namely “legacy” UCB and Thompson
Sampling (TS)11. On the one hand, UCB adopts a deterministic
approach to deal with the exploration-vs-exploitation dilemma,
but its performance generally degrades as the number of arms
increases. On the other hand, Thompson sampling adopts
a probabilistic approach that scales better with the number

11Due to space limits, we refer the reader to the literature introducing such
algorithms, e.g. [22].
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Fig. 6: (a) Effects of different slice requirements; (b) CDF of latency experienced by served traffic; (c) Empirical cumulative regret for a
variable number of slices.

of arms, but it may provide sub-optimal results when the
distribution of reward changes over time (i.e., in non-stationary
scenarios). Conversely, LACO combines the advantages of
them both by adopting a probabilistic model (MDP) guiding
an exploration phase derived from UCB.

B. Multi-armed bandit problem behavior

We first explore the trade-off between action space (and its
granularity) and the associated reward loss. To this aim, we
set up a simple experiment with 2 slices with equal SLA re-
quirements in a deterministic and static environment. We then
apply LACO using 3 different action sets: {0, 2, 4, . . . , 100},
{0, 5, 10, . . . , 100} and {0, 10, 20, . . . , 100} PRBs (with 50,
20 and 10 available configurations each), labelled “2 PRBs“,
“5 PRBs“ and “10 PRBs“, respectively. The results, shown
in Fig. 4 make it evident that the higher the granularity the
longer the exploration phase(s): over 50 intervals for “2 PRBs“
whereas it takes around 10 intervals for “10 PRBs“. Interest-
ingly, the loss in reward attained to the latter configuration is
only 2%. Therefore, due to a faster convergence time at the
expense of minimal reward loss, we empirically select Θ = 10
PRBs for our purposes.

C. Slice SLA violation analysis

We thus grant spectrum-time resources in the granularity
of chunks of 1 second × 10 PRBs. In the first scenario,
we investigate the capacity of LACO to adapt the resource
allocation at variable traffic loads. For this reason, we consider
only two slices with equal requirements, i.e., ν2

i = 10 Mb/s
and ∆i = 20 ms for i = 1, 2. To assess real scenarios with
non-stationary traffic patterns, we vary the mean load of each
slice i following a sinusoidal curve in counter-phase between
µi = 8 Mb/s and µi = 40 Mb/s. This forces the resource
allocation process to span across the whole configuration set
when dealing with SLAs guarantees. As shown in Fig. 5,
the cumulative dropped traffic of each slice changes when
different MAB algorithms are used. The behaviour of UCB
shows high variability after few decision intervals. As soon as
all the arms are selected, the agent starts learning about the
statistics of the outcomes and builds a ranked list. The need

for a comprehensive knowledge of all the arms leads to several
”bad” choices during the exploration phase. This slows down
the convergence to the optimal configuration and penalizes
performance. From the obtained rewards, TS builds a bivariate
probability distribution across the expected reward of each
arm, extracts a random sample and chooses the arm associated
to the maximum value. This approach performs well in static
scenarios as TS favours exploitation of the empirical results
obtained in the first attempts; but in time-varying scenario as
the one we are considering, the reward distribution associated
to each arm fluctuates over time rendering TS unable to
adapt fast enough in highly-dynamic scenarios. In contrast, the
LACO’s model-awareness allows for quicker convergence and
so it accommodates real-time traffic requirements in dynamic
environments and as a result reduces the amount of data
violating delay deadlines.

Obviously, heterogeneous throughput/latency requirements
impact the system differently. Fig. 6a shows the effect of
such variations on the system extending the previous scenario
and considering increasing values of resource requirements as
10 ·α Mb/s, and 10 ·β ms, respectively. As expected, smoother
delay requirements (horizontal direction in the figure) allow
to serve more traffic within the latency bounds defined by
the SLA, although the impact becomes negligible after few
incremental steps. This is due to long decision intervals
when compared to the timescale of fast channel variations.
A proper resource configuration selection allows to match
the offered traffic requirements with the expected channel
capacity, allowing the incoming traffic to be served within
few milliseconds. As the offered traffic approaches the channel
capacity boundary (vertical direction in the figure), the same
task becomes more challenging and the admission and control
process should consider this aspect when granting/rejecting
access to new network slices. LACO ’s abilities to adapt to
demand variations not only mitigates the amount of traffic
violating delay requirements but also improves the distribution
of data delivery delay overall. As shown by Fig. 6b, the
empirical CDF of delay for each slice in the same scenario
presented above remarkably improved with a mean delay equal
to 2.6, 3.9 and 4.9 ms for LACO, TS and UCB, respectively.

Finally, we implement an optimal offline policy with full
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(a) Effects of different number of slices and bandwidth (PRB)
availability. (b) Effects of increasing variability in the channel conditions (SNR).

Fig. 7: Sensitivity analysis of bandwidth availability and SNR variability on the convergence time to the optimal slice resource allocation.

knowledge of the system, i.e., an oracle policy that knows the
future with the corresponding latency violations. We compare
both LACO and TS to this optimal policy for a variable
number of slices. The aggregated demand is adapted to ensure
we operate within the system capacity. In Fig. 6c, we depict
the temporal evolution of the cumulative reward loss over time
(regret) for both approaches. The figure illustrates how the
regret increases with time much rapidly for TS, a difference
that increases with the number of slices.

D. Convergence time

The next generation of mobile networks (5G) promises
to support the provisioning of high throughput and low-
latency services even in highly dense scenarios [2]. These
capabilities are tightly bounded with the possibility to exploit
higher communication frequencies together with wider spec-
trum bandwidth. In the 5G context, bandwidth is expected to
increase up to 100MHz, leading to additional complexity in
the management of radio resources. In order to assess LACO
performances in such scenarios, we investigate the conver-
gence time of our solution to the optimal slice configuration
in different bandwidth settings. To enable more efficient use
of the spectrum resources and reduce the power consumption
at UE side, 5G New Radio (NR) introduces the concept
of bandwidth parts (BWP) [20], where each BWP can be
configured by different numerologies defining specific signal
characteristic, e.g., in terms of subcarrier spacing. Without
loss of generality, we assume all the end-users belonging to
the same slice operating under similar numerology settings.
Moreover, we keep the subcarrier spacing fixed to ∆f = 15
KHz as in legacy LTE systems. Such coarse resource allocation
scheme is mandatory to support LTE devices but, it can be
easily mapped to finer resource block structures as defined
within the 5G domain at lower layer intra-slice schedulers [21].

Fig. 7a compares the convergence time of different MAB
algorithms for an increasing number of slices and bandwidth
availability over a time period of N = 1000 decision intervals.
It should be noticed that depending on channel statistics
and real-time slice requirements, multiple resource allocation
settings (namely arms) may provide optimal performance
making unfeasible a single convergence point. Thus, we opted
to simulate the worst-case scenario allowing for a unique
optimal resource configuration in each simulation run. In
line with previous observations, we fix Θ = 0.1C. Despite
a common initial exploration phase (highlighted in orange),
from the picture it is evident how the curse of dimensionality
affects the overall convergence time. This is more evident
for the legacy UCB approach (depicted in red), which hardly
copes with the increasing size of the action space and in
some runs did not converge to a solution within the time
boundary of our experiment. Focusing on LACO performances
(depicted in black), the number of decision intervals necessary
to converge to the optimal resource allocation outperforms
Thompson Sampling (in blue) by scaling almost linearly with
the number of slices (and PRB availability) after the initial
exploration phase.

Convergence to the optimal slice configuration also shows
its dependency on the radio channel statistics. To measure the
sensitivity of the decision process at the SNR fluctuations,
Fig. 7b considers a fixed number of slices (i.e., 3) deployed in
a system characterized by average channel statistics with an
increasing variance. In every scenario, the average (per slice)
channel realization is derived from a Rayleigh distribution
characterized by a scale parameter τ = {0.1, 0.2, 0.3, 0.4}, re-
spectively. This introduces an increasing level of variability in
the SNR distribution according to the formula Var = 4−π

2 τ2,
as depicted in the plots of the central column. On the left-hand
side of the same picture, it can be noticed how higher SNR
variability has very limited impact on the decision steps. This
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Fig. 8: Experimental setup (a); Architecture overview (b); Arm selection over time (c).

feature is inherited by the Markov Chain model described in
Section III. In particular, provided that the slice requirements
fit within the admissibility region of the system, a higher SNR
variability will simply map into a wider excursion over the
Markov chain steady states without affecting the final reward
of the same arm.

Finally, on the right-hand side of the picture, we depict the
empirical CDFs of the overall latency occurred per slice. In
(almost) static channel conditions, slices’ latency distribution
suffer from having poor channel conditions, which are barely
sufficient to support requested data volumes. In this context,
slices with less stringent delay requirements, namely the MTC
and eMBB, are lightly penalized to meet the expected latency
threshold w.r.t. the URLLC one. When increasing the channel
variability, the average channel conditions improve easing
the allocation resource task thus favouring the satisfaction of
overall latency requirements.

VII. EXPERIMENTAL PROOF OF CONCEPT

In order to illustrate, validate and analyze the performance
of our LACO solution, we developed it as a standalone
software module running on top of an open source platform
that implements the LTE protocol stack, namely srsLTE [23],
attached to a USRP12 Software-Defined Radio (SDR) device
as radio front-end. Our testbed is depicted in Fig. 8a and
consists of one LTE eNB (a modification of srseNB) and
commercial Android tablets13 as UEs. Any single UE emulates
the aggregated traffic of multiple UEs within one slice. We use
mgen14 to generate different downlink traffic patterns. Due to
our LTE spectrum testing license restrictions, we use 10 MHz
bandwidth in LTE band 7 and use SISO configuration for
simplicity. This renders a maximum capacity of ∼ 36 Mb/s
with highest SNR. Finally, in accordance with the findings

12USRP B210 from National Instruments/Ettus Research (https://www.
ettus.com/all-products/UB210-KIT/).

13Samsung Galaxy Tab S2 (https://www.samsung.com/de/tablets/
galaxy-tab-s2-9-7-t813/SM-T813NZKEDBT/).

14mgen (https://www.nrl.navy.mil/itd/ncs/products/mgen).

described in Section VI-B, we set the minimum PRB alloca-
tion value at 10% of the overall availability.

A. Implementation

The architecture of our software implementation and
LACO’s interfaces with srseNB are depicted in Fig. 8b.
LACO interacts with the eNB’s Medium Access Control
(MAC) layer to implement two key features:
• Monitoring agent. This feeds LACO with real-time

SNR reports generated by the physical (PHY) layer from
feedback received from the UEs, the selected MCSs and
corresponding transport block size (TBS) value used to
encode information at the MAC layer, and other traffic
statistics such as packet size and arrival times;

• Policy Enforcer. This allows LACO to dynamically
enforce the PRB allocation policies calculated by our
MAB model, as described in Section V-C.

The main feature of our implementation is the possibility
to collect, with TTI granularity, the traffic arrival rate and
the TBS values to be used in each transmission frame. This
information, together with the scheduling buffer size and data
arrival times, is essential to compute the latency experienced
by the different slices running in the system.

The different metrics are collected in a time series database,
namely InfluxDB, and periodically reported to LACO which
constructs a virtual queue (one per slice) to track the dynamics
of packets arriving at the eNB, from their entrance into
the scheduling buffer to their transmission. This approach
is particularly useful as Internet Protocol (IP) packets are
multiplexed while advancing the transmission path in the eNB,
complicating the computation of slice latencies by external
modules. Our approach aims to characterize the PRB allo-
cation policy currently enforced into the system. In case of
constant traffic and low latency requirements for example,
poor channel conditions will result in lower TBS values and a
sudden increase of the virtual queues size. Such event directly
maps into an additional delay suffered by IP packets at the
Radio Link Control (RLC) layer. Note that higher packet
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(a) System dynamics during MAB discovery phase.
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(b) System dynamics at convergence.

Fig. 9: Comparison of system dynamics during a) discovery phase and b) MAB convergence.

rates also lead to larger waiting times, which might result in
exceeding slices SLAs boundaries. In such cases, the violation
of pre-defined SLA latency boundaries triggers the DTMC
model described in Section III to a delay state and the selected
PRB allocation policy is assigned with a lower reward value.
Conversely, in a stable system where serving rate and packet
arrival rate are balanced, the size of the virtual queues get
smaller and the DTMC model is mostly characterized by non-
delay states.

B. Experimental results

We consider a scenario accounting for two slices character-
ized by the following requirements. The first slice (labelled
Ultra Reliable Low Latency Communications or URLLC)
demands ∆URLLC = 10 ms communication delay and is
characterized by a constant bit rate equal to 9.6 Mb/s. The
second slice (labelled enhanced Mobile Broaband or eMBB)
is characterized by a constant throughput equal to 11.2 Mb/s
with a more relaxed latency requirements ∆eMBB = 20 ms.
We set LACO’s decision interval to 15 seconds and let our
experiment run over the downlink direction for 100 decision
intervals. Fig. 8c shows the evolution of the PRB allocation
configuration decisions taken by LACO over this time span
and how fast the convergence to a suitable layout is achieved.
The monitoring information about incoming traffic at GTP
level collected during the experiment are depicted in the upper
plots of Figs. 9a and 9b. It should be noticed that these values
represent aggregated values (sum) over monitoring intervals of
200ms. Latency and SNR information are depicted in the third
and fourth plots of each figure. In this case, we use maximum
and average as aggregation functions, respectively.

As described in Section V-C, during the starting procedure
the MAB algorithm explores all available arms with the aim of
collecting an initial feedback on the system dynamics. Fig. 9a
depicts the effects of these sequential choices on the latency
experienced by the ongoing traffic flows. The initial steps
drive the allocation of radio resources towards the eMBB

slice thereby providing significant advantages in terms of
experienced delay with respect to the URLLC one. In this
phase, traffic coming from the URLLC might be dropped due
to delay violation ∆URLLC. The scenario changes after the 6-
th decision interval, when the agent selects the configuration
(35-15). Given the current channel quality, that arm does
satisfy the URLLC radio requirements but does not reserve
enough radio resources for the eMBB slice, thus increasing the
latency experienced by its users. Subsequent arm selections
within decision intervals 7 and 8, further reduce the radio
resources assigned to the eMBB slice thus leading the traffic to
violate ∆eMBB. The MAB agent collects this information and
quickly converges to a satisfactory configuration. In Fig. 9b,
we focus on the system dynamics once the convergence is
achieved and clearly notice how both the latency requirements
are satisfied. Interestingly, despite similar traffic requirements,
the algorithm selects the configuration (30-20), which assigns
more resources to the first slice. This is justified by the lower
SNR value experienced by such a slice during the experiment,
as depicted in the bottom plot of Figs. 9a and 9b. The URLLC
slice thus requires more PRBs to compensate for the lower
MCS used during the communication and successfully meets
the latency requirements. For illustration purposes, we select
a vanilla PRB allocation policy, namely round-robin (RR),
as a generic non-latency-aware benchmark and compare the
performance of the two schemes running in the same scenario.
The results of our experiments are summarized in Fig. 10,
where both plots depict the empirical CDF of the latency,
the RLC buffer density and the dropping rate incurred by
each slice for the two allocation schemes. The performances
of the system when LACO is in place are depicted on the
left-hand side picture, whereas the right-hand side shows the
results of the RR-based slice scheduling scheme. In both plots,
the URLLC slice is shown in blue and the eMBB one in
orange. Based on these results, we can observe that LACO
successfully meets both slices latency requirements. This is
achieved by providing the required resources to the URLLC
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(a) LACO (b) Round Robin (RR)

Fig. 10: Evaluation of different performance metrics for different scenarios.

and eMBB slices (Fig. 8c) according to their different latency
needs. This results in the URLLC slice allowing SLA latency
requirements (≤ 10ms) at a very low average latency cost
increase for the eMBB slice. In our experiments, very few
traffic (∼ 2%) experienced a latency above the 10 ms target of
URLLC when using LACO, in contrast to ∼ 10% experienced
with RR. Despite of negligible impact, note that by our design
choice parts of fragmented packets are sent even if above the
latency threshold to avoid long HARQ based retransmission
procedures [24], which may negatively affect the slice per-
formance. Moreover, we wish to highlight that for LACO the
amount of violations due to the exploration and convergence
period could be significantly reduced if desired by introducing
a policy aimed at minimizing such cases. The performance gap
further increases when comparing the eMBB results. Given
that RR sequentially allocates resources to the URLLC slice
and, when the buffer is empty, to eMBB, it consistently favours
the URLLC slice over the eMBB one. Thus, despite the higher
channel quality condition experienced by the eMBB slice, in
every scheduling period the resource availability for the eMBB
slice is highly reduced. This provides a better performances
for URLLC traffic, but at a significant degradation cost for
eMBB users, as confirmed by Fig. 10b (bottom-right), which
depicts the amount of traffic dropped during the experiment.
The latency performance is strongly related with the traffic
queue waiting in the transmission buffers. For this reason, the
two figures depict the buffer size density distribution obtained
during the experiments. It is clear from the comparison how
different PRB allocation schemes affect the transmission buffer
size at RLC layer. In the LACO case, they are generally lightly
loaded, finally providing shorter serving time for incoming
packets. In the RR scenario however, the eMBB traffic suffers
higher congestion, which leads to augment packet’s waiting
time, and consequently increases the rate of latency violations.

VIII. RELATED WORK

The RAN design problem has always been at the forefront
of the mobile operators and a vast amount of research has been

devoted to novel RAN architectures [25], [26] and efficient
radio resource schedulers [21], [27]. Recently, network slicing
has been proposed as a new means for mobile operators to
deploy isolated network services owned by different customers
over a common physical infrastructure. However, as high-
lighted in [28], RAN needs additional functionalities to fully
exploit SDN and NFV principles, specially in the partition
and isolation of radio resources. The authors of [3] focus
on efficient sharing of the RAN resources and proposed a
RAN slicing solution that performs adaptive provisioning and
isolation of radio slices. Their work is based on dynamic
virtualization of base station resources, which gives tenants
the ability to independently manipulate each slice. Although
the proposed architecture may guarantee isolation through
different control planes, no mechanism is in place to ensure the
satisfaction of delay requirements. [29] provides an empirical
study of resource management efficiency in slicing-enabled
networks through real data collected from an operational
mobile network, considering different kinds of resources and
including radio access, transport and core of the network. Sim-
ilarly, the authors of [30] formulate an optimization framework
to deal with resource partitioning problem, where inter-slice
isolation is assured through a virtualized layer that decouples
the reservation choice from the physical resource availability
and proposing different abstraction types of radio resource
sharing. In [31] the authors present an Earliest Deadline
First (EDF) scheduling approach in the context of network
slicing. Differently from us, their approach works on a single
MAC scheduler and assumes for every TTI a complex fine-
tuning of the quota of resources to be assigned to each slice,
thus limiting the implementation of dedicated intra-scheduling
solutions.

The exploration-vs-exploitation trade-off, typical of Multi-
Armed Bandit (MAB) problems is particularly suited to prob-
lems that require sequential decision-making. For this reason,
a wide set of variations from the classical MAB model has
been proposed in the literature [17], [32], together with novel
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algorithms to address them [33]. In this regard, the work
of [34] investigates the MAB problems in case of Markovian
reward distribution, where arms change their state in a two-
state Markovian fashion. The authors addressed the problem
assuming that the Markov chain evolves only when the arm is
played, showing that the proposed sample mean-based index
policy achieves regret performances comparable to legacy
UCB algorithm. The authors of [22] performed a complete
regret analysis of the TS algorithm, generalizing the original
formulation to distributions other than the Beta distribution.
The MAB framework is also applied in [35] to deal with
rate adaptation problem in 802.11-like wireless systems. The
authors demonstrate that exploiting additional observations
significantly improve the system performance. Similarly, [36]
deals with scheduling transmissions in presence of unknown
channel statistics. The proposed algorithm learns the channels’
transmission rates while simultaneously exploiting previous
observations to obtain higher throughput. This led to the
design of a queue-length-based scheduling policy using the
channel learning algorithm as a component in time-varying
environment. The authors of [37] presented an algorithm for
multivariate optimization on large decision spaces based on an
innovative approach combining hill climbing optimization and
Thompson sampling. While the scalability of their algorithm
has been proven through exhaustive simulations, the frame-
work lacks a complete analysis of regret bounds aimed at
demonstrating the impact of hill climbing in combinatorial
decision making. Finally, similar to us, [38] deals with an
MAB formulation where the reward distributions are char-
acterized by temporal uncertainties. Interestingly, they were
able to mathematically capture, in terms of reward, the added
complexity embedded in the non-stationarity feature when
compared to the legacy framework.

The key novelty of LACO relies on the exploitation of
(abstract) information of the underlying system structure to
expedite solutions. Conversely, prior works are blind to such
type of information and need to spend substantial time explor-
ing very bad decisions before achieving it.

IX. CONCLUSIONS

Major efforts in the design of next-generation mobile sys-
tems pivot around network slicing and (mobile edge) low-
latency services. This paper aims to bridge the gap between
them both by designing LACO, a RAN-specific network
slice orchestrator that considers network slice requests with
strict latency requirements. Despite the efforts devoted by
5G researchers and engineers to network slicing, to the best
of our knowledge, this is the first radio slicing mechanism
that provides formal delay guarantees. To make network slic-
ing decisions in environments with varying wireless channel
quality and user demands, LACO builds on a learning Multi-
Armed Bandit (MAB) method that is model-aware as opposed
to classic MAB approaches that are blind to information
regarding the underlying system. In addition, we exploit in-
formation from the system model to expedite the exploration-
vs-exploitation process. Our results derived from an imple-
mentation with off-the-shelf hardware show that LACO is

able to guarantee strict slice latency requirements at affordable
computational costs.
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