
Multiservice-based Network Slicing Orchestration
with Impatient Tenants

Bin Han, Member, IEEE, Vincenzo Sciancalepore, Senior Member, IEEE,
Xavier Costa-Pérez, Senior Member, IEEE, Di Feng, and Hans D. Schotten, Member, IEEE

Abstract—The combination of recent emerging technologies
such as network function virtualization (NFV) and network
programmability (SDN) gave birth to the novel Network Slicing
paradigm. 5G networks consist of multi-tenant infrastructures
capable of offering leased network “slices” to new customers
(e.g., vertical industries) enabling a new telecom business model:
Slice-as-a-Service (SlaaS). However, as the service demand gets
increasingly dense, slice requests congestion may occur leading
to undesired waiting periods. This may turn into impatient
tenant behaviors that increase potential loss of the business
attractiveness to customers. In this paper, we aim to i) study
the slicing admission control problem by means of a multi-
queuing system for heterogeneous tenant requests, ii) derive its
statistical behavior model, iii) find out the rational strategy of
impatient tenants waiting in queue-based slice admission control
systems, iv) prove mathematically and empirically the benefits of
allowing infrastructure providers to share its information with
the upcoming tenants, and v) provide a utility model for network
slices admission optimization. Our results analyze the capability
of the proposed SlaaS system to be approximately Markovian
and evaluate its performance as compared to a baseline solution.

Index Terms—Beyond-5G, virtualization, network slicing, im-
patience, NFV, cloud service, resource management, multi-
tenancy, multi-service

I. INTRODUCTION

Network Slicing [1] is an emerging 5G technology that
allows infrastructure providers to offer “slices” of resources
(computational, storage and networking) to network tenants.
In this way a new business game [2] is introduced as infras-
tructure providers (sellers) strategically decide which tenants
(buyers) get granted slices to deliver their services. Intuitively,
this involves a number of challenges that fall in the economic
research field, which, in turn, requires a detailed understanding
of the context. In particular, the infrastructure provider may
rely on this emerging technology as a means to increase its
revenue sources. However, to achieve the overall revenue max-
imization, advanced admission control policies are required as
tenants compete for a limited set of available resources.

In this competing environment, a brokering solution may
act as a mediator between seller and buyers while providing
service level agreements (SLAs) guarantees to granted running
slices [3]. Admission control policies will guide the broker in
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the process of deciding the set of network slices that can be
installed on the system and the ones to be rejected. As the
number of network slices grows—as envisioned for the next
few years [4]—it will be necessary to design an automated
solution that dynamically decides on the received slice requests
while guaranteeing a certain degree of fairness among network
tenants. Indeed, network slice requests may be queued while
waiting for the next available resources, or may be re-issued.

To properly design such a slicing brokering process, a deep
understanding of the slice queuing behavior is needed that
accounts, e.g. the average slice duration (based on the slice
type), the frequency of slice requests (based on the tenant),
etc. This enables a Slice-as-a-Service (SlaaS) [5] solution that
fully supports on-demand slices requests: tenants issue slice
requests for given periods of time and decide whether to re-
issue the same request upon rejection based on service level
agreements. Advanced slicing admission control solutions may
have different policies for tenants frequently asking for short-
term slices—such as Internet-of-Things (IoT), or crowded
event-based network slices—as they will automatically re-
issue the same request in the near future, with respect to those
that require only few longer network slices—such as Mobile
Virtual Network Operators (MVNOs) or Industrial Network
Slices [6]—which may be probably lost if not accepted.
Moreover, similar as widely recognized in all kinds of queuing
systems for service scheduling, tenants may be impatient and
choose to leave for another available infrastructure provider
instead of waiting in a queue, especially when the expected
waiting time is long. This relies on the reasonable assumption
that multiple network operators may offer similar slice services
over the same spatial area opening up to new business models
as per the SlaaS concept. A concrete example could be a
stadium area covered by multiple telco operators, where a
short-term crowded event may require a tenant to ask for
a slice that, in turn, can be offered by different operators
based on different offers. Such impatient behavior shall also be
taken into account while designing a slicing admission control
solution to mitigate potential revenues loss in case of resource
congestion.

While conventional admission control problems have been
extensively studied in the literature, as our main contribution
in this study, we pioneer a new stochastic model for network
slicing that leverages on the multi-queuing system to optimally
design an admission control of on-demand network slices as
well as to orchestrate them once accepted. This also allows
to account for impatient tenant behaviors and heterogeneous
network slice characteristics while, at the same time, enforcing
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given performance metrics, such as fairness between tenants or
between network slice types or utility-based maximization. We
also numerically demonstrate this multi-queuing framework to
outperform conventional single-queue solution.

The remainder of this article is structured as follows. In
Section II, we introduce our assumptions and we formulate
the network slicing admission control problem for on-demand
slice request arrivals. In Section III, we provide a simple
use case to cast our problem into a queuing system. In
Section IV, we model the problem as a multi-queue problem
where each queue may host slice requests of the same type
while waiting for being granted. In Section V, we devise and
analyze the multi-queuing controller with additional metrics
by proving the capability of conventional queuing models on
such system with impatient tenants taken into account, whereas
in Section VI we further deepen our analysis on the rational
impatient behavior of tenants. In Section VII we briefly
introduce a scheme to optimize the MNO’s admission control
strategy. In Section VIII, we carry out an exhaustive simulation
campaign to prove our findings and validate our model. In
Section IX we discuss the applicability of some assumptions
whereas in Section X we outline the main related works on this
topic. Finally, in Section XI we provide concluding remarks.

II. MODEL DESIGN

We cast our problem into a typical network slicing scenario,
where the Mobile Network Operator (MNO) decides to lease
infrastructure resources to tenants, willing to pay to take over
the control of an independent network slice so as to deliver
an end-service to their own users. Hereafter, we describe our
assumptions and mathematically formulate the problem.

A. Resource pool and slice types
Let us consider a single MNO that possesses a static

resource pool of M different resources and offers N = |N | pre-
defined types of slices. Depending on the slice type n ∈ N ,
it costs a certain resource bundle to create and maintain a
slice. Let r = [r1, r2, . . . , rM ]T, s = [s1, s2, . . . , sN ]T and
cn = [c1,n, c2,n, . . . , cM,n]T denote the resource pool, the set of
active slices (i.e. slices created upon accepted requests), and
the resource bundle required to maintain a slice of type n ∈ N ,
respectively. The assigned resources can be then represented
as

a ∆= [a1, a2, . . . , aM ]
T = C × s, (1)

where C = [c1, c2, . . . , cN ]. At any time instance, the MNO
cannot simultaneously maintain more slices than its resources
may support. This constraint is expressed by the feasibility
region [7]:

S = {s|rm − am ≥ 0, ∀1 ≤ m ≤ M}. (2)

Note that S is a finite discrete set, thus the MNO can be
characterized as a finite-state machine (FSM) where each
active slice set represents the system state s ∈ S.

B. Slice admission in SlaaS
We consider a certain number of tenants randomly generat-

ing network slice requests. Slices requested by a certain tenant

are of the same type. For each tenant, the inter-arrival time be-
tween two requests is drawn from an exponential distribution.
The request arrivals of different tenants are independent and
identically distributed (i.i.d.).

Once a request for slice creation is triggered, the MNO
makes a binary decision, i.e., the MNO either accepts or
declines it. Upon acceptance, the requested slice is created,
and continuously maintained so that a corresponding resource
bundle is occupied until the slice is terminated (at the end
of its lifetime) and the resource bundle is released. It should
be noted that the constraint of feasibility region forbids the
MNO to accept any request when its current state is close to
the border of S. In other words, if the current MNO resource
pool is close to be saturated by active slices, it does not
accept additional network slice requests that might experience
a service disruption. This introduces the well-known concept
of admissibility region, where the idle resources are sufficient
to allow to accept at least one new request1:

A = {s|s ∈ S, ∃n : s + ∆sn ∈ S}, (3)

where ∆sn is the unit slice incremental vector of type n

∆sn = [0, . . . , 0︸  ︷︷  ︸
n−1

, 1, 0, . . . , 0︸  ︷︷  ︸
N−n

], n ∈ {1, 2, . . . , N}. (4)

Fig. 1 briefly illustrates the concepts of S and A with an
example where M = 2, N = 2.

Fig. 1: The network resource utilization can be described with the
set of active slices s, which always falls in the feasibility region S.
The admissibility region A is a proper subset of S.

We assume that the lifetime of every slice is an i.i.d.
exponentially distributed variable and the expected lifetime
depends on the slice type. We also consider that the MNO
makes every decision according to a consistent slicing policy,
i.e., the decision depends only on the type of requested slice
n and the current system state s that defines the current set of
active slices.

1The admissibility region has been exhaustively studied in the literature for
different use cases and scenarios. We refer the reader to [8], where a stochastic
admissibility region is derived for a network slicing admission control.
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TABLE I: Key Notations

Notation Meaning

M, N,N Amount of resource types, amount of slice types, set of slice types
r, s, a Resource pool, set of active slices, assigned resources
C, cn Resource cost matrix, resource cost of a type-n slice
S,A Feasibility region, admissibility region
∆sn unit slice incremental vector of type-n
Φ, Φi MNO’s preference matrix, MNO’s preference vector in state s(i)
ln, Ln,Wn, Current queue length, average length, and average waiting time in queue n
λn, µn, ρn Request arrival rate, serving rate, and work load rate in queue n
bn, βn Tenants’ balking rate and balking exponent in queue n
Wmax ,n, αn Tenant’s maximal waiting time and reneging exponent in queue n
u0,n, un Tenants’ one-time cost to issue a request and periodical cost to wait in queue n
ζn, τn A tenant’s periodical profit from a type-n slice, the slice’s random lifetime
ηn Releasing rate of type-n slices
3 Maximal waiting cost w.r.t. expected achievable profit of a blind reneging tenant
∆K Minimal waiting time of a tenant only aware of its position in queue

C. Delayed reattempt upon request denial

If a request for slice creation is declined—because of a
temporary shortage of available resources due to many other
active slices—the tenant is not able to obtain the requested
slice immediately. Instead, its request may be sent to the
MNO again for a reconsideration after some delay with the
hope that some running slice has expired (i.e., resources have
been released). Generally, there are two critical features of the
delaying mechanism, which should be taken into account: i)
resource efficiency and ii) fairness. The former requires that
the chosen mechanism purses the resource pool utilization
maximization whereas the latter requires that the expected
delay for different requests is normalized.

Two categories of approaches are commonly used to solve
this kind of problem:
Random delay. Every declined request is re-proposed to the
MNO after a random delay. This approach provides a good
fairness, but generates extra signaling overhead while being
not able to provide the discipline of “First Come, First Served”
(FCFS), as described in the next section.
Queuing. Declined requests wait in one or multiple queue(s)
for the next opportunity during the MNO’s decisional process.
This is the most common solution in cloud service scheduling.

Hereafter, we show how a multi-queuing system may be
fully exploited to provide insights on the system behaviors
and pave the road towards a slicing orchestration solution.

III. NETWORK SLICING QUEUING

In the literature a number of disciplines have been studied
to serve the request queues. Among the others, the most
common policies are i) First come, first served (FCFS),
ii) Last come, first served (LCFS), iii) Random selection
for service (RSS) and iv) Priority-based (PR). All of them
analyze different behaviors and are used to achieve distinct
performance metrics. For instance, the LCFS is used to allow
the latest arriving request to override its awaiting predecessors,
such as in information-freshness-critical scenarios [9]. The

PR is implemented when there is some high-level preference
to be considered in centralized scheduling [10]. RSS shows
huge complexity in the implementation without bringing any
significant advantage with respect to the others. Hereafter, we
discuss different queuing schemes with focus on the FCFS
case. However, any other discipline may be easily adapted to
our analysis.

A. Queuing schemes
We differentiate the queuing systems into two different

categories: i) single-queue and ii) multi-queue systems. When
considering the single-queue, only one queue is implemented
for all declined requests that need to wait for the next accep-
tance opportunity, an example was given in [11]. Conversely,
the multi-queue system implements multiple queue for de-
clined requests. Specifically, such queues may show different
features. We consider homogeneous-mixed queues, wherein
each queue consists of requests for slices of different types,
and heterogeneous queues, where each queue is specified for
only one unique slice type. We next show a simple case-study
to justify that the queuing system is suitable for this kind of
problems.

B. Resource efficiency: a simple case-study
Consider a simplified case where M = 1, N = 2, r = [1],

c1 = [0.6], c2 = [0.2] and s = [1, 0]T. The first four requests
awaiting in the queue(s) are in the sequential order [1, 1, 2, 2].
The MNO takes a greedy strategy, i.e., it intends to accept all
requests so far the resource pool supports.

In both the schemes of single-queue and homogeneous
multi-queue, the awaiting requests of type 2 are blocked
from acceptance due to the type-1 requests ahead of them,
and therefore have to wait in queue, although the MNO
has both enough idle resource and the intention to accept
them immediately. The heterogeneous multi-queue scheme,
in contrast, enables the MNO to fully utilize its resources as
shown in Fig. 2.
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Fig. 2: A simple case study on different queuing schemes.

Obviously, both the single-queue and the homogeneous
multi-queue schemes can also overcome this issue by introduc-
ing a “queue-jumping” mechanism. However, this may require
an extra design of (more complex) logic that automatically
(and dynamically) selects the queue jumper(s). Therefore, in
this study we consider the scheme with N FCFS heterogeneous
queues. Note that despite the intuitiveness and case-driven
nature of this motivation, in Section VIII we demonstrate the
performance superiority of this multi-queuing scheme through
numerical simulations. Furthermore, as a well-studied exten-
sion of single-queue, the homogeneous multi-queue scheme
is known to benefit only from its linearly increased serving
rate in comparison to single-queue. Unfortunately, this gain
does not apply in slice admission control where the request
serving rates of different queues are jointly limited by the
shared resource pool, while the implementation complexity is
significantly higher than single-queue. Hence, in this study the
performance of homogeneous multi-queue scheme will not be
discussed.

IV. HETEROGENEOUS MULTI-QUEUE ADMISSION CONTROL

Based on the heterogeneous multi-queue scheme, we pro-
pose in this section a novel code to present the MNO’s
preference for different slice types in variable states, a multi-
queue admission controller for SlaaS, and analyze its queue
model.

A. Slice-type preference encoder

Differing from existing studies that do not consider queuing
and the single-queue scheme, in the multi-queue scheme, the
MNO may receive multiple requests for slices of different
types within the same operations period (which is usually
synchronized to the billing cycle, e.g. a month or longer).
Therefore, instead of making a binary decision to accept
or decline a request, it has to either accept one among the
simultaneously awaiting requests while declining the rest, or
decline all of them2. Especially, with heterogeneous queues,
the MNO’s preference for some request queue(s) over the

2Note that any simultaneous acceptance of multiple requests, which is
technically applicable, can be decomposed into a sequence of atomic single-
request acceptance operations. By considering only atomic acceptance oper-
ations, the action space is minimized.

others implies its proclivity to some slice type(s) against the
others.

It shall be noted that the decision of accepting a request from
a certain queue requires the queue to be non-empty, which
makes the MNO’s decision dependent not only on the active
slice set, but also on the status of queues. This extends the
state space and increases the problem complexity. To simplify
the analysis, we propose to investigate not the decision but
the MNO’s preference, which is decoupled from the queue
status. However, it would be possible to uniquely determine
the decision when any queue status is provided. Specifically,
for an MNO offering N different slice types, we can encode
an arbitrary preference of the MNO into a preference vector
of length N + 1:

Φ = [ϕ1, ϕ2, . . . , ϕN+1]
T, (5)

which is a permutation of {0, 1, . . . , N}. Every element ϕi > 0
indicates a slice type and its position in Φ represents the
MNO’s preference. More specifically, ∀i, j ∈ {1, 2, . . . N + 1},
i < j denotes that MNO prefers slice type ϕi over ϕj .
The zero-element denotes reserving resource for potential
opportunities in future, so that all the requests of type ϕj will
not be served by the MNO at all, if j > i and ϕi = 0.

While being in states on (or close to) the border of feasibility
region s ∈ S−A, the MNO cannot accept further request from
any queue, hence the preference does not make any impact.
Thus, we focus on the admissibility region A and assume that
the MNO’s preference is consistent and depends only on its
current state s ∈ A. Thus, we can characterize the MNO’s
admission strategy with a (N + 1) × |A| preference matrix as
the following

Φ = [Φ1,Φ2, . . . ,Φ |A |]

=


φ1,1 φ1,2 . . . φ1, |A |
φ2,1 φ2,2 . . . φ2, |A |
...

...
. . .

...
φN+1,1 φN+1,2 . . . φN+1, |A |


,

(6)

where each column Φi represents the preference for slice types
in a specific admissible state s(i) ∈ A, for which the index i is

arbitrarily mapped by I : A I
→ {1, 2, . . . |A|}.

B. Mechanism overview
Let ln denote the length of queue n, the decision entity

executes the algorithm described in Fig. 3. The MNO keeps
waiting for incoming tenant issues and responses upon issue
arrivals. If the tenant issues to release a slice of its own, the
MNO always releases it. If the tenant issues to create a new
slice, the request will be pushed into a queue with respect to
the type of requested slice. After responding to the issue, the
MNO will recursively serve the request queues in a sequence
determined by its admission strategy and active slice set, until
no more waiting request can be accepted. Then it stops serving
the queues and waits for the next tenant issue.

V. NETWORK SLICING CONTROLLER DESIGN

Hereafter we analyze different characteristics of the conven-
tional queuing models, highlighting the novel features applied
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Initialize with certain N , S, A, Φ and s;
while True do Main loop

Wait for the next incoming tenant issue;
if Slice of type n released then Releasing a slice

s← s − ∆sn ;
else if Slice of type n requested then Request arrives

ln ← ln + 1;
end
while s ∈ A do Recursively serving the queues until blocked

s̃← s;
Find the current preference vector Φ according to Φ and s;
for 1 ≤ n ≤ N do Serve queues w.r.t. preference

if ϕn = 0 then Omitting queues after 0
break;

else if ln > 0 AND (s + ∆sn) ∈ S then Acceptance
ln ← ln − 1;
s← s + ∆sn ;

end
end
if s̃ = s then Blockage detection

Break;
end

end
end

(a) Pseudo code of the multi-queue slice admission controlling
algorithm.

(b) Graphical illustration.

Fig. 3: A heterogeneous multi-queue mechanism can be implemented
to enable delayed slice admission, in which a specific preference
among different slice types is addressed to every state of active slice
set.

to our model while designing the network slicing controller.
This helps to shed light on the main advantages and limitations
of our novel admission control model.

A. Analysis of inter-acceptance time

As per existing works [7], [8], [12], we consider request
arrivals of every slice type as an independent Poisson process,
so that the inter-arrival time between requests in every queue
is an independent exponential random process. Conversely, the
request acceptance rate of every queue is jointly determined
by the slice releases of all types, and the MNO’s preference
strategy.

Remark 1. Consider a heterogeneous multi-queue slice ad-
mission controller that executes the algorithm in Fig. 3(a) with
a consistent preference matrix. The acceptance in different
queues are mutually independent Poisson processes, if: 1) the
arrivals of new requests and releases of active slices are

mutually independent Poisson processes for every individual
slice type; 2) the arrivals of different slice types are mutually
independent from each other, the releases of different slice
types are mutually independent from each other.3

B. Queuing-theoretic analysis

While considering both request arrivals and request accep-
tances (service) as Poisson processes, every request queue is a
classic M/M/1 queuing system, known as single-server birth-
death system [14]. Hence, many features of birth-death model
can be directly applied.

1) Little’s Formula: For slice type (queue) n, given its
request arrival rate λn, according to the famous Little’s formula
[15] the mean length of queue n is

Ln = λnWn, (7)

where Wn represents the average waiting time in queue n.
2) Steady Queue State Probability: Given the request ar-

rival rate λn and serving rate µn of queue n, the probability
that the queue steadily consists of l requests at an arbitrary
time instant is geometrically distributed, i.e.,

pn(l) = (1 − ρ)ρl, (8)

where ρn = λn/µn < 1 is the work load rate of queue n.
3) Waiting Time Distribution: The probability density func-

tion (PDF) and the cumulative density function (CDF) of an
arbitrary type-n request’s waiting time are

f (Wn) =

{
0 Wn < 0
(µn − λn)e−(µn−λn)Wn Wn ≥ 0

, (9)

F(Wn) =

{
0 Wn < 0
1 − e−(µn−λn)Wn Wn ≥ 0

. (10)

C. Extension: impatient tenants

From Eqs. (7–10) it is clear that both Ln and Wn converge
only when λn < µn. Otherwise, when the request acceptance
rate is below the arrival rate in queue n, the queue length will
infinitely increase, and therefore also the mean waiting time.
This is known as the necessary and sufficient condition of
statistical equilibrium in queuing processes, as proven in [16].

However, in a real slice admission controller, there are
various situations where λn ≥ µn for some n, including cases
• when the controller is specified with an inappropriate

strategy, so that requests in the queue n is rarely or even
never accepted despite of resource feasibility;

• when the release rates of active slices are low, so that
the resource pool fails to support a sufficiently high µn
regardless of any admission strategy.

There are two mechanisms that prevent queuing systems from
such divergence. On the one hand, the system may force to
truncate a queue at some maximal length, and forbid this
queue to take any new request before it is shortened. On the
other hand, the clients may lose patience while waiting, and
leave the queues before being served (e.g., for looking for

3We refer the readers to [13] for a detailed proof of Remark 1.
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some other MNO with resource availability). In the scenario
of SlaaS, the system (MNO) is probably very cautious with
refusing requests, while the waiting time can be critical to
the customers (tenants). Therefore, here we consider no queue
truncation but queues with impatience.

Usually, impatience in queues can occur in three different
behaviors: i) balking, i.e. customers being reluctant to join
a queue upon arrival, ii) reneging, i.e. customers leaving the
queue after joining and waiting, and iii) jockeying from long
lines to shorter ones. As the heterogeneous multi-queue design
disables jockeying, here we consider the balking and reneging
phenomena.
Balking Model. The phenomenon of balking can be modeled
in such a way, that every arrival request of slice type n enters
the queue with a probability bn, which is a monotonically
decreasing function of the current queue length ln. Ancker and
Gafarian have proposed two different balking models in [17],
[18]. The first model considers a linear balking factor:

1 − bn = ln/ln,max , (11)

where ln,max is the truncation length of queue n. The second
considers a non-linear balking factor:

1 − bn =

{
0 ln = 0;
1 − βn/ln ln ∈ N+,

(12)

where βn ∈ [0, 1] measures the willingness of tenants request-
ing type-n slices to wait. In cases that the tenant has knowledge
about µn, Shortle et al. suggest another non-linear balking
model [14]:

1 − bn = 1 − e−βnln/µn, βn > 0. (13)

Reneging Model. The phenomenon of reneging can be mod-
eled by randomly assigning an individual maximal waiting
time to every request when it joins the queue. The request
will leave the queue after that maximal waiting time if it has
not been accepted yet. Ancker and Gafarian [18] proposed
to consider exponentially distributed random maximal waiting
time:

Wmax ,n ∼ Exp(αn), (14)

where 1/αn > 0 is the mean maximal waiting time in queue
n.

Here we consider the exponential balking and reneging
models described by Eq. (13) and Eq. (14), respectively. We
will justify this choice later in Section VI. Before that, we
first continue analyzing the performance of out heterogeneous
multi-queue slice admission controller, taking into account the
impatience of tenants.

D. Performances with balking and reneging

It should be noted that the balking and reneging processes
are with memory, leading to a non-Markovian behavior of
request acceptances. However, under low balking and reneging
rates, this impact can be negligible and the acceptance process
can still be approximated as Poissonian. When the balking
and reneging rates rise to significant levels, the memory of

acceptance process shall be considered, as demonstrated in
Section VIII-B1 by means of simulations.

Under a combination of exponential balking and exponential
reneging, the steady state probability of having l requests in
the queue n is

pn(l) =



(
1 +

∑+∞
j=1
Γ(γn+1)( λn δ

j
n

αn
)l

Γ(l+γn+1)

)−1

l = 0

pn(0)
∏l

j=1
λnδ

j
n

µ+jαn
l ∈ N+

, (15)

where γn = µn/αn, δn = e−βn/µn and Γ(·) is the Gamma
function. A detailed calculation is provided in the appendix.

Meanwhile, we are interested in three different distributions
of waiting time spent in a queue n: i) fa(Wn) for requests that
are eventually accepted, ii) fr(Wn) for requests that renege and
iii) fq(Wn) for all requests that join the queue. Let us define An

and Jn as the events of request being accepted and joining the
queue n, respectively. Following the analysis approach used in
[17], [18], there are

P(Jn) =
∑+∞

j=1
pn( j)δ

j
n (16)

P(An) = pn(0) +
∑+∞

j=1
pn( j)δ

j
nγn/(γn + j), (17)

P(An, Jn) =
∑+∞

j=1
pn( j)δ

j
nγn/(γn + j), (18)

P(An |Jn) = P(An, Jn)/P(Jn). (19)

It can be obtained that

fa(Wn) =
pn(0)αne−(µn+αn)Wn

P(An, Jn)

∑+∞

l=1

(
1 − e−αnWn

) l
δ

l(l+1)
2

n

l!(l − 1)!
(20)

fr(Wn) =αne−αnWn
1 − P(An |Jn)g(Wn)

1 − P(An |Jn)
, (21)

fq(Wn) =P(An |Jn)
[

fa(Wn) − αne−αnWng(Wn)
]
+ αne−αnWn,

(22)

where g(Wn) =
∫ Wn

0 eαnξ fa(ξ)dξ.
The expectations of waiting times are therefore

Wa,n =

∫ +∞

0
fa(Wn)dWn, (23)

W r,n = 1/αn − P(An |Jn)Wa,n/[1 − P(An |Jn)], (24)

Wq,n = [1 − P(An |Jn)]/αn. (25)

VI. DECISION ANALYSIS OF IMPATIENT TENANTS

To decide which models shall be used to describe the
behavior of impatient tenants in the SlaaS scenario, we take
the tenant’s point of view and consider the business model of
every individual tenant service instance through its life cycle.
A rational strategy of impatience shall be obtained from the
perspective of decision making by tenants.

A. Tenant business model
Generally, the motivation of tenants to request network

slices is to fulfill the end-user service demands from their own
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customers. For simplification, here we consider w.l.o.g. that for
every certain tenant, every service demand can be supported
by one slice of the same type. Once a tenant is granted with
the requested network slice, it launches its business session
to deliver service to the end-users. The duration of a business
session, i.e. the lifetime of the corresponding network slice, is
a random variable, of which the expectation can be estimated
by the tenant before issuing the slice request.

It can take the tenant a one-time cost u0 to issue the service
request to the MNO, which is used to issue the request and
prepare the end-user service. Besides, this cost may also covers
part (or even the whole lump) of the rent for requested network
slice, which the MNO may also requires the tenants to prepay
as deposit in advance. Additionally, when a request waits in
queue, it can consistently generate a periodical waiting cost u
for the tenant, which is used to keep the tenant standby for
launching the business session. The value of u0 and u shall be
carefully tuned by the MNO with respect to its network slice
service capacity, selection policies and the tenants’ demand,
which might be mapped onto an optimal pricing problem, out
of scope of this study.

Upon an admission, a new network slice will be created and
granted to the corresponding tenant to support the desired end-
user service. This service is supposed to generate a periodic
revenue Rev that we assume as known or well predictable
by the tenant. Meanwhile, the tenant has to pay a periodical
expenditure Exp that is composed by the operations cost to
maintain the service, and the residential rent for the network
slice in case that the rent is not completely prepaid to the
MNO in the request-issuing phase. We can assume w.l.o.g.
that the periodical profit ζ = Rev−Exp is always positive – as
the tenant will never issue such a request otherwise.

B. Rational balking & reneging strategies
A request can be characterized by a vector [n, u0, u, ζ, τ],

where n is the slice type, τ is the expected slice life time
upon acceptance, u0, u and ζ are the business model param-
eters discussed in Section VI-A. Meanwhile, a queue can be
characterized by [l, λ, µ] where l is its current queue length,
λ and µ are the arrival rate and serving rate, respectively.

When the business demand arises, i.e. request is generated
(not issued yet) by the tenant, the expected total profit that
this business session can generate is

E{Profit} = ζτ. (26)

Meanwhile, the expected cost of issuing the request and
waiting in the queue till acceptance is

E{Cost} = u0 + uE{wl}, (27)

where wl is the time a request must wait in queue until being
accepted, when there are l − 1 other requests ahead of it.

Assume that the tenants can obtain the a priori knowledge
about wl , self-evidently, a rational tenant will issue the request
if and only if E{Profit−Cost} ≥ 0, which can be described as
a binary decision model:

Db =

{
1 ζτ − u0 − uE{wl} ≥ 0;
0 otherwise,

(28)

where Db = 1 stands for issuing and Db = 0 for balking.
The rational strategy for reneging mostly follows the same

principle, but slightly differs from the balking case by con-
centrating on future cost and neglecting the sunken costs, i.e.
the issuing cost and the waiting cost already generated. For an
arbitrary request at time t, denote with k(t) its current position
in queue, and with w(k) its remaining waiting time at position
k, the tenant is able to rationally choose whether to renege
according to:

Dr(t) =

{
1 ζτ − uE {wk(t)} ≥ 0;
0 otherwise,

(29)

where Dr(t) = 1 indicates waiting and Dr(t) = 0 for reneging.

C. Rational balking without reneging

For simplification, we first ignore reneging, so that

E{wl} =
l
µ
, (30)

Db =

{
1 τ ≥

u0µ+ul
µζ

0 otherwise
. (31)

Hence, given certain ζ , u0 and u, it yields that Db = Db(l, τ)
if the tenant is able to observe l before pushing its request into
the queue. The balking chance of such a tenant is therefore a
function of l under any certain distribution of τ:

b(l) =
∫ +∞

0
Db(l, t) fτ(t)dt =

∫ +∞

u0µ+ul

µζ

fτ(t)dt

=1 − Fτ

(
u0µ + ul
µζ

) (32)

Particularly, when u0 = 0 and τ ∼ U(0, τmax ):

buni(l) =

{
1 − ul

µζτmax
0 ≤ l ≤ µζτmax

u ;
0 otherwise,

(33)

which is the linear balking model in [17]. Note that there is
an implicit limit for the queue length lmax =

µζτmax
u , even if no

such limit is explicitly set by the MNO.
When u0 = 0 and fτ(t) = 1

(t+1)2 (rational distribution):

brat(l) = 1 −
(
−

1
t + 1

)���� ul
µζ

t=0
=

µζ

ul + µζ
=

µζ
u

l + µζ
u

. (34)

When u0 = 0 and τ ∼ Par(1, 1):

bpar(l) =


1 l = 0;

1 −
(
− 1

t

)��� ul
µζ

t=1
=

µζ
u

l otherwise,
(35)

which is the hyperbolic balking model in [18] with the factor
of patience β =

µζ
u . Note that this model assumes every slice

remains active for at least an unit time period.
When u0 = 0 and τ ∼ Exp(η):

bexp(l) = 1 −
(
−e−ηt

) �� ul
µζ

t=0 = e−
ηu
ζ

l
µ , (36)

which is the exponential balking model in [14] with the
exponent of impatience β =

ηu
ζ > 0.
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D. Rational reneging

Now we consider the reneging behavior. As we will derive
below, the decision of reneging highly relies on the tenant’s
knowledge of the queue. So we discuss this problem separately
in different cases.

1) Full knowledge: First, we assume that every tenant is not
only able to observe the position k of its request in the queue
in real time, but also informed by the MNO about E {wk}. In
this case, Eq. (29) can be directly applied to determine the
maximal waiting time tmax:

ζτ − uE{wk(tmax)} = 0⇒ E{wk} =
∑k−1

i=0

1
µ +

∑i
j=0 ωj

, (37)

where ωi ≥ 0 is the reneging rate at the queue position i for
i > 0 and ω0 = 0. Therefore, this case has an equivalent form
where the MNO informs the tenant that issues the k th request
in queue about µ and ωi for all i < k. The values of µ and
ωi converge to stable levels in long term when the business
scenario remains consistent, therefore we consider them here
as constants that are known by the MNO.

2) Knowledge of serving rate: In this case, we assume that
every tenant is informed by the MNO about µ, and keeps
observing the position k of its request in the queue, but has
no knowledge about ωi . As a tenant generally lacks knowledge
of requests issued by other tenants, i.e. the statistics of their
parameters [u0, u, p, τ]. So no tenant is able to estimate the
values of ωi in this case, which disables the estimation of
E {wk} according to Eq. (37). However, knowing that ωi ≥ 0
for all i, the tenants can make conservative estimations based
on

E {wk} =
∑k−1

i=0

1
µ +

∑i
j=0 ωj

≥
k
µ
, (38)

and therefore Eq. (29) becomes

Dr(t) =

{
1 k(t) ≤ µζτ

u ;
0 otherwise.

(39)

3) Knowledge of position: In this case, every tenant is able
to track its request’s current position k in queue, but has no a
priori knowledge about µ. Thus, the tenant has to estimate µ
through an online learning process while waiting in queue:

µ̂(k) =
l − k
Tk

, (40)

where Tk is the time that the request took to arrive the k th

position since its entrance to the queue. Thus, Eqs. (38) and
(39) become respectively

E {ŵk} =
∑k−1

i=0

1
µ̂(k) +

∑i
j=0 ωj

≥
k
µ̂(k)

=
kTk

l − k
, (41)

Dr(t) =

{
1 k(t) ≤ lζτ

uTk(t )+ζτ
;

0 otherwise.
(42)

It has to be noted here that the estimation in Eq. (41) is only
valid when k < l, and the estimation error ε2

µ decreases as k
increases. Therefore a threshold ∆K should be set whereas

µ̂(t) is estimated only when l − k ≥ ∆K . In summary:

Dr (t) =


1 k(t) < l − ∆K,
1 l − ∆K ≤ k(t) ≤ l(ζτ

uTk(t )+ζτ
,

0 otherwise.

(43)

4) Knowledge of average waiting time: In this case, all
tenants are only informed about the average waiting time w

since joining the queue till being served, in which the waiting
time requests that balk and renege do not count. Meanwhile,
the current position in queue k is unobservable for a request
unless k = 0 (i.e. when the request gets served).

In this case, a request can only roughly consider all other
requests ahead of it in queue as a batch. Since the service
to every single request is a Poisson event, we approximately
consider the complete service to this batch (of unknown
length) as a Poisson event with arriving rate of 1/w. Thus,
the reneging decision can be made as

Dr(t) =

{
1 ζτ − uw ≥ 0;
0 otherwise.

(44)

Note that Eq. (44) is independent of t or k so that it always
returns the same decision.

5) Blindness: If the tenant possesses neither the position k
of its waiting request in the queue, nor any knowledge about
the dynamics of queue, it can only make a blind reneging,
where a maximal waiting time is predetermined at the queue
entrance. A straightforward solution is to set a maximal cost
proportional to the total profit that can be generated by the
requested slice upon admission: umax = u0 + utmax =3 ζτ,
where 3≥ 0 is the factor of risking that indicates the tenant’s
intension of waiting in the queue. This yields that

Dr(t) =

{
1 t < 3ζτ−u0

u ,

0 otherwise.
(45)

It is worth to note that when u0 = 0 and τ ∼ Exp(η), the
blind reneging model becomes the classic reneging model [18]
where the maximal waiting time is exponentially distributed.
Furthermore, when 3→ +∞ the tenants will never renege and
therefore become patient.

E. Balking with renaging

When tenants are able to renege on their requests and the
issuing cost u0 = 0, the balking behavior can be considered as
a special case of reneging at the queue entrance (t = 0, k = l).
Clearly, this implies to disable balking in the aforementioned
cases VI-D3 and VI-D5 where no a priori estimation of E{w}
is available for tenants.

VII. SLICE ADMISSION STRATEGY OPTIMIZATION

In slice admission control, there are various performance
metrics that may include: the overall network utility, the
admission rate, and the average request waiting time, as
discussed below.

The network utility rate of a slice can be differently defined,
such as the periodical payment u that the MNO receives from
the tenant, or the generated network throughput, etc. It is
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common to consider the utility rate of a slice as determined
by the slice type, and the overall network utility rate at any
time instant t as the sum of utility rates of all active slices:

uΣ(t) =
∑N

n=1
sn(t)un, (46)

where sn(t) is the number of type-n active slices at time t, and
un is the utility rate of every type-n slice. In long term, the
average overall network utility rate can be estimated from the
acceptance and releasing rates of different slice types:

uΣ =
∑N

n=1

µnun
ηn

. (47)

The average waiting time of all requests in queues is

Wq =

∑N
n=1 Wq,nLn∑N

n=1 Ln

. (48)

The overall admission rate is the following

P(A) =
∑N

n=1 λnP(An)∑N
n=1 λn

. (49)

All three criteria are determined by the request behavior pa-
rameters αn, βn, λn and the acceptance rate µn. Given a certain
combination of [αn, βn, λn, ηn], µn is uniquely determined by
the MNO’s strategy, i.e. by the preference matrix Φ. Hence,
with consistent behaviors of request arrival and slice releasing,
we can optimize either of them by selecting the best Φ.

A major challenge for analysis exists in the complex relation
between the acceptance rates [µ1, µ2, . . . , µN ] and the strategy
Φ, as Φ does not directly imply the MNO’s action or statistics,
but only its preference.

Nevertheless, if the steady-state probability of queue lengths
pn(l), as defined in Eq. (8), is known or measurable for all
n ∈ N , we can estimate µn for all n with respect to Φ and the
initial state sinit as follows.

First, define a bijection S ↔ {1, 2, . . . , |S|} as J = JS(s)
where JS(s) = IA(s) for all s ∈ A. Then extend the definitions
in Eqs. (4), (6) and (8) with

∆s0 = [0, 0, . . . , 0]︸        ︷︷        ︸
N

, (50)

φ̃i, j =

{
0 j > |A|
φi, j j ≤ |A|

, ∀i ∈ {1, 2, . . . , N + 1}, (51)

p0(0) = 0, (52)

respectively. The probability of state transition from s ∈ S to
s + ∆s can be then calculated as

Prob(s→ s + ∆sn) =
n−1∏
k=1

pφ̃k,J
(0)(1 − pφ̃n,J

(0)). (53)

Thus, when the initial state sinit is known, we can obtain
the long-term probability distribution of system state s as

Prob(sj | sinit = si) = lim
K→∞

1
K

∑K

k=0
[Ψk]i, j, (54)

where Ψ is the transition matrix where Ψi, j = Prob(si → sj):

Ψ =


Ψ1,1 Ψ1,2 . . . Ψ1, |S |
Ψ2,1 Ψ2,2 . . . Ψ2, |S |
...

...
. . .

...
Ψ|S |,1 Ψ|S |,2 . . . Ψ|S |, |S |


. (55)

More generally, if not the exact value but the probabil-
ity distribution of the initial state is available as Pinit =

[pinit(s1), pinit(s2), . . . , pinit(s |S |)], the long-term probability dis-
tribution s is the following

Prob(sj | Pinit) = lim
K→∞

1
K

∑K

k=0

∑ |S |

i=1
pinit(sj)[Ψk]i, j . (56)

We can obtain the expected active slice number sn of every
slice type n as a function of Ψ and thus, as a function of Φ.
Now, recalling Eqs. (46–47) it yields that

sn =
µn
ηn
, (57)

and then we can write the following

µn =
sn
ηn
=

∑
s∈S Prob(s | Pinit)sn

ηn

=
1
ηn

∑
s∈S

lim
K→∞

1
K

∑K

k=0

∑ |S |

i=1
pinit(sj)[Ψk]i, j .

(58)

Based on this analytical expression, we are able to optimize
[µ1, µ2, . . . , µn] with respect to Φ. However, it is evident that
Eq. (58) is non-convex w.r.t. Φ, which prohibits analytical
solution of the global optimum. On the other hand, the overall
domain size of Φ is 2(N+1) |A | , which can assume unaffordable
high values for any realistic dimension of |A| in practical
networks, making the exhaustive search impossible. This is
an integer linear programming (ILP) problem that is proven
to be NP-Hard. Advanced machine learning and heuristic
search methods might be explored to solve it at an affordable
computational load. Due to space constraints this is left as
future work.

VIII. NUMERICAL SIMULATIONS

A. Simulating the decisions of impatient tenants

1) Simulation setup: In the numerical simulations we define
a simplified scenario, where the MNO holds a normalized
two-dimensional (M = 2) resource pool r = [1, 1] and
N = 2 different slice types are defined and specified with the
parameters listed in Table II. Note that we assume the lifetime
of every type-n slice is an exponentially distributed random
variable τn ∼ Exp(ηn), where 1/ηn is the average lifetime of
type-n slices.

TABLE II: Specifications of the defined slice types (all parameters
normalized to dimensionless quantity).

Slice type (n) un λn 1/ηn u0,n un ζn
1 [0.01, 0.05] 6 5 0 1 8
2 [0.05, 0.01] 10 3 0 1.5 12

Under these specifications, the admissibility region A is
composed of 341 different values of s. For the sake of simplic-
ity, we do not consider the option of “reserve” in the MNO’s
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slicing strategy: in this way for every state s only two different
preference vectors, i.e. ϕ1 = [1, 2, 0] and ϕ2 = [2, 1, 0], are
available. Therefore, there are in total 2341 different slicing
strategies applicable for the MNO. We randomly select 1000
from these valid slicing strategies, and with every MNO slicing
strategy, we evaluate the rational balking/reneging strategies
of impatient tenants with different information available. For
every individual evaluation, we simulate the arrivals of tenant
requests and the MNO’s operations for 1000 periods. To
mitigate divergences of queue lengths, especially for the case
of patient tenants, an upper bound of length is set to 100 for
every queue.

2) Evaluation results: During the simulation, we track the
end-profit of every issued slice request defined as follows

ζe =

{
ζτ − u0 − uw accepted;
−u0 − uw reneged,

(59)

where w is the total waiting time from queue entrance to
admission/reneging. Then we evaluate the balking/reneging
strategies of tenants with three different metrics:

• Total profit: the sum of end-profits obtained by all issued
slice requests;

• Mean profit: the average end-profit obtained by all issued
slice requests;

• Profiting chance: the ratio of slice requests that lead to
positive end-profits in all issued requests.

The simulation results are listed in Table III.
It can be easily observed from the results that, given the

knowledge about position of its request in queue and the
queue’s serving rate, a tenant has a high chance to make
correct decisions of balking and reneging. Thereby it is able
to mitigate most losses caused by excessive waiting in case of
request congestion, and thus obtain a positive profit.

The information about reneging rates provides a further
improvement in addition, but only by an insignificant degree.
One reason of this phenomena could be that, after a ratio-
nal balking with sufficient knowledge, the reneging rate of
requests generally remains limited, and therefore it exhibits a
little impact on the waiting time in queue.

In contrast, when provided with only insufficient informa-
tion, tenants are likely to benefit less from their impatience.
An impatient tenant knowing only the mean waiting time in
queue can reasonably avoid most extreme long waitings by
balking, and therefore has more chance to achieve a positive
profit in comparison to patient tenants, yet significantly lower
than the tenants with full knowledge. The knowledge about
current position of request in queue alone fail to assist tenants
with their decisions, resulting to a similar performance as that
of the patient tenants – which is the bound provided by the
artificial queue truncation. Unwise decisions are also made by
the blind tenants that renege after predetermined waiting time,
whose performance strongly depends on the patience factor 3,
and in the worse case even outperformed in profiting chance
by patient tenants.

In summary, network slice tenants need information about
queue dynamics from the MNO—at least the minimum in-

formation to enable balking—so that they can benefit from
impatience in case of slice requests congestion.

3) Distribution of reneging time: In Section VI-C, we
have analytically proven the applicability of various classical
models of balking statistics in the slice admission control
scenario upon different distributions of the slice lifetime τ. The
distribution of reneging time in SAC, however, is relatively
challenging to derive in such way.

To evaluate the applicability of existing reneging models,
we execute additional numerical simulations. The environment
is configured to the same specifications listed in Table II, and
the tenants possess full knowledge of the queuing system. First
we randomly generate 1000 different admission strategies, for
every strategy we carry out 25 rounds of Monte-Carlo test,
in each round the MNO operates 40 periods. Then we fix the
MNO to a static admission strategy that ϕ = [2, 1, 0] for all
s ∈ A, and repeat this test 1000 times, also with 25 rounds
per time and 40 operations periods per round. We observe the
waiting time of all reneged requests and illustrate the obtained
results in Fig. 4. It can be observed that the exponential
distribution generally provides a satisfactory fit to the reneging
time in most cases, which supports applying the classical
model proposed in [18] to simplify queue models from the
MNO’s perspective. However, it shall be remarked that in case
of strong congestion where a queue can be extremely long,
e.g. Queue 1 in the fixed strategy test, the reneging time may
become fat-tail distributed and no more exponential.

4) Impatience model selection: Certainly, when fed with
the knowledge of the current active queues, tenants may be
more encouraged to balk or renege from densely congested
queues of slice requests, which in turn leads to a decreased
number of awaiting slice requests. Nevertheless, it should be
noted that the phenomena of balking and reneging are only
significant when the queues are considerably long. In this
case, the MNO’s resources are already sufficiently utilized,
and the utilization rate is hardly impacted by the impatience
of tenants. On the other hand, if there is a lack of information
about the queues, as demonstrated in Section VIII-A2, tenants
can suffer from high probability of business loss. This will,
self-evidently, suppress the tenants’ interest for the MNO’s
slice service on long-term windows, leading to a consistent
loss of customers from the MNO’s perspective. In summary,
we can argue that it is a win-win option for the MNO to share
full knowledge of the queues, or at least the request’s current
position in queue and the serving rate of queue, to every
awaiting tenant. In such context, we assert it to be reasonable
and rational to apply the models of exponential balking and
reneging, as we did in Section V-D.

B. Simulating the heterogeneous multi-queue slice controller

To carry out simulations in a consistently specified environ-
ment, we consider the same scenario as defined in Table II.

1) Verification of geometric IAT distribution: In case of
patient tenants, Remark 1 can also be verified through nu-
merical simulations. We consider all tenants as patient, and
set an upper bound of queue length to 100 for all queues
to mitigate queue divergence. Then we randomly generate
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TABLE III: Tenant profits in 1000 operation periods under different balking/reneging strategies, “Patience” is the benchmark strategy where
no balking or reneging takes place.

Case Total profit (×103) Mean profit Profiting chance
Type 1 Type 2 Type 1 Type 2 Type 1 Type 2

Patience 36.06 16.88 10.74 2.86 49.21% 40.48%

Blindness
3= 1 33.62 24.08 7.93 3.54 46.27% 43.47%
3= 0.1 110.89 139.23 18.45 13.90 25.42% 22.93%
3= 0.01 129.45 153.98 21.53 15.40 46.29% 43.39%

Knowledge of position (∆K = 2) 36.03 16.86 10.72 2.79 49.23% 40.47%
Knowledge of average waiting time 50.88 60.11 32.97 25.36 85.65% 79.18%
Knowledge of serving rate 93.12 100.07 57.17 43.25 94.80% 83.59%
Full knowledge 92.68 101.53 57.66 44.34 95.57% 83.87%
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(a) Random admission strategy
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(b) Fixed admission strategy (prefer type 2)

Fig. 4: The distribution of tenant requests’ reneging time in multi-
queue slice admission control with fitting results.

1000 slicing strategies, in which the resource reservation
(n = 0) is always assigned with the least preference. For
each strategy, 25 rounds of Monte-Carlo tests are executed. In
each testing round, an MNO with a 2-queue slice admission
controller is initialized to a random but fully resource-utilized
state, and then operates under the consistent strategy for 40
operations periods. Then we investigate the distribution of
inter-acceptance time (IAT) for each queue, and attempt to
fit the measurements with geometric distributions, which is
the discrete-time version of exponential distribution. Out of
all the 25 000 tests, 99.948% IAT records were successfully
fitted by a Maximum-Likelihood-Estimator (MLE). A sample
result is shown in Fig. 5(a), where a good fitting performance
can be observed.

To evaluate the fitting for every strategy we use the
Kullback-Leibler divergence (KLD) [19]:

DKL(PIAT | Geom.) =
∑∞

k=0
pIAT(k) log

pIAT(k)
(1 − p̂)k p̂

, (60)

where pIAT(k) is the empirical probability mess function
(PMF) of the measured IAT, and (1 − p̂)k p̂ is the geometric
PMF with fitted parameter p̂. KLD is an indicator of fitness
between two distributions, which equals 0 for two identical
distributions and approaches towards +∞ for two completely
irrelevant ones. The KLD distribution over all 25 000 tests is
depicted in the left part of Fig. 5(b), which shows a satisfactory
fitness for both queues (slice types).

Furthermore, to verify the impact of impatient tenants’
behavior, we grant all tenants with full knowledge about
the queues to activate balking and reneging, and then repeat
the aforementioned simulation procedure. Only 20.568% of
the measured IAT tracks can be successfully fitted with the
geometric distribution this time (on the rest measurements, the
MLE fails to converge). The KLD distribution of successfully
fitted IAT tracks is illustrated in the right part of Fig. 5(b).
Compared to the case of patient tenants, we can observe a
significant increase of KLD here, confirming our assertion
that the behaviors of balking and reneging will remove the
Markovian feature of the system. Remark that when the
balking and reneging rates are low, such impact can be slight
enough to be neglected.

2) Evaluation of the proposed controller: To verify the
effectiveness and potential in optimization of the proposed
multi-queue slice admission controlling mechanism, we gen-
erate 10 000 random strategies, and measure all three above-
mentioned performances metrics uΣ, Wq and P(A) for every
strategy in both reference scenarios 1 and 2. Similar to the last
tests, every strategy is evaluated through a 25-round Monte-
Carlo test where each round begins with a random initial
state and lasts 40 operations periods. Impatient tenants are
considered.

To provide benchmarks, we test the controller with two spe-
cific “naïve” strategies: Prefer type 1: the preference vector is
[1, 2, 0] at all system states; Prefer type 2: the preference vector
is [2, 1, 0] at all system states. Moreover, we implement and
test a simple “greedy” single-queue slice admission controller
that always accepts the first request in its queue regardless of
type, as long as the resource pool supports.

The results are illustrated in Fig. 6. It can be observed
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(a) The distribution of inter-acceptance time in two different queues
under a random strategy, fitted as geometric distribution.
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(b) The KLD of fitting IAT with geometric distribution, 1000 random
strategies tested, 25 Monte Carlo tests for each. Fitting success rate
is 99.948% for patient tenants and 20.568% for impatient ones.

Fig. 5: The IAT of individual queue under an arbitrary strategy is
geometrically distributed iff tenants are patient.

that the multi-queuing controller, when specified with an
appropriate strategy, outperforms the greedy single-queue so-
lution, especially when under dense demand and queue are
congestions. Note that, however, the performance highly relies
on the strategy selection, leading to a critical necessity of
strategy optimization.

Utility rate (1/per.) Admission rate (%) Avg. waiting time (x0.2 per.)

25

30

35

40

Prefer type 1
Prefer type 2
Single-queue (greedy)

Fig. 6: Performance distribution of the proposed multi-queue slice
admission controller with 10 000 random strategies, in comparison
to selected benchmarks.

IX. FURTHER DISCUSSION

In practical wireless networks, both the dynamics of re-
source availability (e.g. channel fading) and the resource elas-

ticity of active slices must be taken into account. The model
in this paper is an approximation with a static resource pool
r and rigid slices, which holds in long-term with appropriate
dynamic scheduling to multiplex slices. Note that such a slice
multiplexing implicitly enables slice overbooking with a risk
to break SLAs [20], [21]. The challenge of balancing the
multiplexing gain and the overbooking risk in heterogeneous
multi-queue admission control settings deserves future study.

It shall also be noticed that the assumptions of Poisson
arrivals/releases may not hold in some practical service sce-
narios. In this case, the queues are not M/M/1 systems and
cannot be considered as continuous-time Markov systems.
Nevertheless, as pointed out in [14], many such continuous-
time non-Markov processes can be easily transformed into
discrete-time Markov chains by observing only the state tran-
sitions. Therefore, the analyses given above also apply to most
scenarios with non-Poisson request arrivals/releases.

X. RELATED WORK

We summarize the main research effort in the literature on
different topics, such as Slice-as-a-Service, queuing theory for
cloud services and network slicing admission control.

An overview on multi-tenancy service and 5G network
slicing is given in [3] from perspectives of architecture and
standardization, introducing the novel concept of network
slice broker, which executes the admission control. Differ-
ent attempts have been made in [5], [8], [22] and [23] to
demonstrate how the admission control can benefit the overall
network resource utilization. In [24], a robust network slicing
mechanism by addressing the slice recovery and reconfigu-
ration in a unified framework Additionally, in [13] a multi-
queuing system for heterogeneous tenant requests is modelled
to derive statistical behavior models showing how this can be
approximated to a Markovian system. However, none of the
above-mentioned works have addressed the option of allowing
infrastructure provider to share information with upcoming
tenants so as to improve the overall system performance
while, at the same time, formulating a network slice admission
optimization problem based on a novel utility model.

While we have considered network slicing in a generic
and abstracted view, which is generally applicable in both
radio access network (RAN) and core network (CN) domains,
recently there has been a dense specific research interest for
RAN slicing and its impact on radio resource management
(RRM). On that [25] and [26] provide interesting solutions
for efficient resource management and orchestration. From
the perspective of slicing admission strategy optimization, the
methods reported in [5], [7], [8] can be worthwhile to refer.
A dynamic resource controller for vRANs based on deep
reinforcement learning is presented in [27], where the authors
also showed a real implementation over different platforms.
The authors of [28] introduces a novel framework for RAN
slicing by showing performance requirements in terms of the
required number of resources per deadline interval. Although
all these works only consider a binary decision mechanism
where declined requests simply vanish instead of being served
after a delay, the algorithms deployed by them to solve



13

ILP problems will inspire future development of model-less
heuristic strategy optimizers for the proposed multi-queue slice
admission controller.

SlaaS shall be considered as a specific type of public
cloud environment, where service sessions can be categorized
into multiple types with significantly heterogeneous resource
demands. Queuing theory has been widely applied for cloud
computing services to model the statistics of service demand
and delivered quality of service (QoS), such as [29] and [30].
Especially, service schedulers with heterogeneous queues for
different service types are discussed in [31] and [32]. In addi-
tion, [33] relates to multi-resource sharing between flows with
heterogeneous requirements providing a convergence proof.
These models provide valuable reference views in addition
to the model proposed in this paper. Finally, balking and
reneging behavior of impatient clients in queuing systems are
extensively studied in [34], [35].

Differing from the aforementioned works wherein a “strat-
egy” usually represents the decision as a function of the system
state, our study proposes a novel mechanism of multi-queuing
slice admission control where the slicing strategy represents
the MNO’s preference of slice types in different system states.
Besides, out paper also considers impatient tenants, which,
from the best of our knowledge, has never been investigated
in SlaaS environments.

XI. CONCLUSION

The network slicing paradigm is expected to play a key-
role in next generation networks design. However, devising
an admission control solution that takes into account complex
network tenants behaviors involves a large number of chal-
lenges.

In this paper, we have proposed a multiservice-based net-
work slicing controller that automatically accounts for tenants
waiting to get their network slices request granted given
certain request frequency and patience characteristics. Our
results show that i) unexpected tenants behaviors may be
modeled with advanced admission control policies, ii) the
decisions of rational impatient tenants can be mapped onto
classical queuing-theoretic models comprising balk and renege
parameters and iii) numerical simulations closely follow the
exponential balking/reneging models derived.

APPENDIX
THE STEADY STATE PROBABILITY OF QUEUE WITH

EXPONENTIAL BALKING AND RENEGING

Consider the queue of type-n requests where the request
arriving rate is λn, the request serving rate is µn, the reneging
factor is αn and the balking factor is 1− e−βnl/µn . Let pn(l, t)
denote the transient probability the queue contains l requests
at the time instant t, we can write the transition equations of
the dynamic queue state:

∂p′n(0, t)
∂t

= − λnpn(0, t) + µnpn(1, t), (61)

∂p′n(0, t)
∂t

= −
(
λne−βn/µn + µn

)
pn(1, t) + λnpn(0, t) (62)

+ (µn + αn)pn(2, t),

∂p′n(0, t)
∂t

= −
(
λne−βnl/µn + µn + (l − 1)αn

)
pn(l, t)

+ λne−βn(l−1)/µn pn(l − 1, t) (63)
+ (µn + lαn)pn(l + 1, t), l ∈ {3, 4, 5, . . . }.

Let γn = µn/αn, κn(l) = λne−γnl/µn , the steady-state equations
are therefore

0 = − κn(0)pn(0) + γnpn(1) (64)
0 = − (κn(1) + γn)pn(1) + κn(0)pn(0) + (γn + 1)pn(2) (65)
0 = − (κn(l) + γn + l − 1) pn(l) + κn(l − 1)pn(l − 1) (66)
+ (γn + l)pn(l + 1), l ∈ {3, 4, 5, . . . }

From the steady-state equations we have

pn(l) =
κn(l − 1)
γn + l − 1

pn(l − 1) = pn(0)
∏l

i=1

κn(i)
γn + i

=pn(0)
λne−iβn/µn

µn + iαn
, l ∈ N+.

(67)

Knowing that
∑+∞

l=0 pn(l) = 1, pn(0) can be calculated as

pn(0) = 1
/(

1 +
∑+∞

l=1

∏l

i=1

λne−iβn/µn

µn + iαn

)
. (68)
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