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Abstract—This paper proposes a novel semi-distributed and
practical ICIC scheme based on the Almost Blank SubFrame
(ABSF) approach specified by 3GPP. We define two mathematical
programming problems for the cases of guaranteed and best-
effort traffic, and use game theory to study the properties of
the derived ICIC distributed schemes, which are compared in
detail against unaffordable centralized schemes. Based on the
analysis of the proposed models, we define Distributed Multi-
traffic Scheduling (DMS), a unified distributed framework for
adaptive interference-aware scheduling of base stations in future
cellular networks which accounts for both guaranteed and best-
effort traffic. DMS follows a two-tier approach, consisting of
local ABSF schedulers, which perform the resource distribution
between guaranteed and best effort traffic, and a lightweight local
supervisor, which coordinates ABSF local decisions. As a result
of such a two-tier design, DMS requires very light signaling to
drive the local schedulers to globally efficient operating points.
As shown by means of numerical results, DMS allows to (i)
maximize radio resources reuse, (ii) provide requested quality
for guaranteed traffic, (iii) minimize the time dedicated to
guaranteed traffic to leave room for best-effort traffic, and (iv)
maximize resource utilization efficiency for best-effort traffic.

I. INTRODUCTION

The very fast growth of mobile data traffic and the in-
creasing expectations of end users for high rates are pushing
wireless industry to speed-up the introduction of new cellular
technologies. Indeed, it is commonly recognized that the new
challenges posed by mobile traffic can be handled only with
new technologies and network architectures [1]. This is driving
the evolution towards two main directions: on one side the
use of high-frequency spectrum portions even under harsh
signal propagation [2], and on the other side the densification
of network deployments with a very large number of base
stations [3]. The latter scenario clearly exacerbates interference
issues in traditional mobile spectrum portions and calls for
novel resource management schemes. To address this point,
we focus on interference control for future cellular networks.

As basic approach, 3GPP has proposed the Almost Blank
Sub-Frame (ABSF [4]) scheme to easily allow coexistence
between macro-cells and limited-power cells (e.g., small or
femto-cells) in heterogeneous networks. In particular, the
ABSF is used to prevent base station transmissions in se-
lected time slots, thereby reducing the inter-cell interference
towards small-cell users. Recently, ABSF has been extensively
adopted as a novel inter-cell interference coordination scheme
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even for homogeneous networks, wherein only macro-cells
are deployed ([5], [6], [7]). This novel ABSF standpoint
poses new challenges while designing efficient mechanisms
for automatically selecting ABSF transmission patterns.

ABSF schemes that have been proposed so far mainly
approach the problem from a centralized point of view. This
requires a huge exchange of Channel State Information (CSI)
messages when the number of cells substantially grows up
[8], [9], [10] and poses scalability issues in dense deploy-
ments [11], [12]. Actually, ABSF scheduling is known to be
a NP-hard problem [6] and tackling it for large portions or
the entire network is undoable. Moreover, existing schemes
compute ABSF patterns without explicitly considering quality
guarantees, but they rather aim to increase the spectral ef-
ficiency through stochastic approaches, assuming worst case
interference conditions [7]. By including traffic guarantees
in the loop, the complexity of a centralized approach would
increase even further and might be not easily supported with
current technologies. In contrast, a distributed approach with
local decisions would not only be aligned with the well
accepted self-organizing network concepts [13], but it would
also allow to jointly decide in real-time ABSF patterns and
user scheduling, rather than assuming worst case conditions
for the scheduling process.

In this paper, we propose Distributed Multi-traffic Schedul-
ing (DMS), a resource management scheme providing a
lightweight ABSF coordination of local schedulers (base sta-
tions) with the help of a supervisor, which guides ABSF
decisions of the base stations and drives the system to a high
performance operating point while avoiding fully centralized
decisions on ABSF patterns. Hence, DMS defines a semi-
distributed approach that offloads and reduces the computa-
tional burden from a centralized controller to base stations,
while drastically abating the signaling overhead. This makes
our approach the first proposal towards a practical and effective
solution to ABSF that can be implemented in real networks.

The design of DMS is driven by a game theory-based
analysis of two optimization problems: (i) minimizing the
use of resources for guaranteed traffic and (ii) maximizing
the efficiency of best-effort communications in the resources
left available by the guaranteed traffic. In our model, each
base station is a player whose “moves” consist in selecting
ABSF transmission patterns and announcing them to the
neighbors. The supervisor simply instructs the base stations on
the amounts of resources to be dedicated to guaranteed traffic
and to best-effort traffic. In particular, the base stations play
two games: first they play a Distributed Inelastic Game Γ to
make decisions on guaranteed traffic allocations, and then they
play an Interference Coordination Game Ω to decide how to
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allocate best effort traffic across base stations on the remaining
resources. By using a specific class of best response strategies,
we show that Γ always converges to a Nash equilibrium with
an algorithm that compacts TTIs used by ABSF patterns of
all base stations and leaves as much room as possible for
best-effort traffic. We also show that Ω is a weighted player-
specific bottleneck matroid congestion game, which requires
the presence of a high-level supervisor to converge.

We validate the proposed scheme via simulation and show
that, despite its low complexity and the very limited amount
of control messages required, DMS achieves near-optimal
performance in terms of: (i) maximizing radio resources
reuse, (ii) providing required quality to guaranteed traffic,
(iii) minimizing the time dedicated to guaranteed traffic
to leave room for best-effort traffic, and (iv) maximizing
resource utilization efficiency of best-effort traffic. DMS also
exhibits significant advantages over existing schemes in terms
of efficiency, complexity, fairness, and throughput. In addition,
the comparison with existing power control schemes reveals
that complex approaches (e.g., [14]) bring little additional gain
with respect to DMS and behave less fairly, whereas low-
complexity solutions (e.g., [15]) exhibit lower efficiency.

In the following, we formulate the guaranteed traffic and
best-effort traffic problems from a centralized viewpoint in
Section II. In Section III and Section IV we define a dis-
tributed version of such problems, and use game theory to
analyze them. In Section V we propose DMS, a unified
framework meant to supervise the distributed solution of the
two distributed problems. DMS is validated in Section VI.
Section VII provides a thorough report on the current literature
and Section VIII concludes the work with some final remarks.

II. SYSTEM MODEL AND CENTRALIZED PROBLEMS

The goal of ICIC algorithms is to improve system spectral
efficiency by controlling base station mutual interference so
that transmissions can be performed with high rate modulation
and coding schemes. To this end, 3GPP has defined the ABSF
mechanism, where base stations are instructed to remain silent
over some periods in order to avoid interfering with each other,
and thus, harming overall performance. Specifically, ABSF
orchestrates base stations activities by performing scheduling
on a time-slot basis, i.e., per Transmission Time Interval (TTI),
and forcing base stations to be silent in some selected TTIs.
We say that such base stations are blanked, and refer to the
overall schedule of base stations as ABSF time-patterns.

In the following, we formulate the ICIC problem wherein
the ABSF standard technique is implemented. A problem solu-
tion consists in a set of ABSF time-patterns, i.e., bitmaps that
specify which TTIs must be blanked, to be assigned to base
stations. The problem formulations presented in this section
consider downlink traffic only as it is the transmission di-
rection experiencing congestion issues. However, an extended
model can be easily derived for uplink transmissions without
exacerbating the complexity of our solution. Our network
model addresses two distinct traffic classes: (i) guaranteed bit-
rate (GBR) and (ii) best-effort. While the former is subject to
a strict rate constraints and it is accommodated with higher
priority, the latter can be served with the remaining resources
since it has no stringent requirements in terms of latency and
bandwidth.

We tackle the above problem by observing that it can be
solved in two steps, due to the fact that the GBR traffic is
inelastic while the best-effort one is elastic: (i) first, one can
find a global time-allocation strategy for different base stations
able to accommodate GBR traffic demands into a minimum
number of TTIs, (ii) then, use the TTIs left to serve best-effort
traffic while maximizing the network spectral efficiency and
guaranteeing a good level of fairness.

In what follows, we first formulate the ICIC problem from a
centralized scheduling perspective for both traffic types. While
such a solution is practically infeasible due to computational
complexity and signaling overhead, it offers a benchmark cor-
responding to the best possible performance of any algorithm.

A. Optimizing GBR Traffic Period

We formalize the problem of optimizing the GBR traffic
period length as follows. Let us assume that the network
consists of a set N of base stations, each of which having a
set of users Ui, so that U = ∪i∈NUi is the set of users in the
network. Let the GBR traffic demand of each user be known
at the base station side, expressed in volume of traffic to be
periodically served, and denoted as Du, u ∈ Ui. Let W denote
the available time horizon (in TTIs), i.e., the length of ABSF
patterns, which means that the user demand guaranteed rate
is Du/(W · Tslot) bps, where Tslot is the duration of a single
TTI. Let us further assume that a base station can schedule
at most one user in each TTI, and some TTIs can be blanked
by means of the ABSF pattern. While this assumption helps
to keep tractable our problem formulation, we will show later
it can be readily relaxed taking into account multiple users
scheduled within the same TTI.

The GBR traffic period devoted to serve the GBR traffic
demands will be no longer than a given portion of the W
TTIs; without loss of generality, let us assume that this period
is a set of consecutive TTIs, T = {1, 2, . . . ,W}. The objective
of the optimization problem is to allocate user demands in the
smallest number of TTIs, L ≤ W , while satisfying channel
quality constraints. The remaining W − L TTIs can be used
for best-effort traffic allocation.

Since the system has limited capacity, the above problem
may not be feasible as it may not be possible to allocate the
entire user demand set within the assigned slots. In order to
ensure that the problem is always mathematically feasible, we
define a per-user penalty pu representing the unserved demand.
As long as no penalty is accumulated, the solution minimizes
the GBR traffic period L leaving more room (e.g., W−L TTIs)
for best-effort traffic.

We formulate the optimization problem for the GBR traffic
period by considering an SINR-aware scheduling of users with
interference thresholds and penalties. We denote by α > 0 the
relative importance of penalties pu over utilized TTIs and by
st the binary variables indicating whether TTI t is used for
transmissions by at least one base station. Similarly, binary
variables yi,t indicate whether BS i uses TTI t and binary
variables xmu,t indicate whether user u is scheduled in TTI
t with modulation and coding scheme (MCS) m ∈ M, in
which case it receives a rate Rm ∈ R, in bits per-TTI. We
use L to indicate the highest index of used TTIs within T . As
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concerns the rate assigned to users, we consider the signal-
to-interference-plus-noise ratio (SINR) computed with base
station transmission power P 1, channel gain Gu,k between
user u and the base station k, and background noise N0. The
use of transmission rate Rm is subject to the availability of a
SINR value greater than a corresponding threshold γm (see,
e.g., [16]). With the above definitions, the problem can be
formally defined as follows:
Problem GBR:

minimize L+ α
∑
u∈U

pu,

subject to tst ≤ L,∀t ∈ T ;∑
i∈N

yi,t ≤ |N |st,∀t ∈ T ;∑
u∈Ui,m∈M

xmu,t ≤ yi,t,∀i ∈ N , t ∈ T
P Gu,i

N0+
∑

k∈N :k 6=i

P Gu,k·yk,t
≥ γm · xmu,t,

∀i ∈ N , u ∈ Ui, t ∈ T ,m ∈M;∑
m∈M,t∈T

Rmxmu,t + pu ≥ Du,∀u ∈ U ;

st, x
m
u,t ∈ {0; 1},∀u ∈ U ,m ∈M, t ∈ T ;

yi,t ∈ {0; 1},∀i ∈ N , t ∈ T ;
pu ≥ 0.

The first set of constraints forces the correct value to be
assigned to L. The second and third sets of constraints impose
the coherence between, respectively, (i) active BSs and used
TTIs, (ii) scheduled users and active BSs. The third set
of constraints also imposes that at most one user may be
scheduled in each TTI. The fourth set of constraints is used
to match SINR and used rates. Although SINR constraints
are not linear, they can be easily linearized. The fifth set of
constraints expresses the target per-user volume of data, while
the remaining constraints are used to define the ranges of the
decision variables. In particular, the per-user volume constraint
is used to set penalty values in order to compensate eventually
unserved traffic demands. Finally, note that setting α to a large
value guarantees that decreasing pu has always the highest
priority: the number of occupied slots is reduced only when
the sum of penalties is zero. Problem GBR can be solved with
state-of-the-art Mixed-Integer Linear Programming (MILP)
solvers.

The main assumption behind the centralized model is that
users’ CSI is perfectly known. Such information is gathered
and updated by a centralized optimizer, which uses it to
compute SINR constraints.

Note that Problem GBR can be abstracted by considering t
as a transmission opportunity rather than a TTI. For instance,
t can be considered as an available physical resource block
(PRB) serving multiple users.

B. Optimizing Best-effort Traffic Period
Once a feasible GBR traffic period L is found, the remaining

Z = W − L TTIs in the ABSF pattern will be used for
accommodating best-effort traffic demands. Differently from
the GBR case, here the goal is to obtain a user scheduling
and BS activation that can efficiently exploit the remaining

1Following current cellular deployments, we assume that base stations
transmit at a constant power. However, our solution can be easily extended
to heterogeneous deployments wherein different power levels are set without
affecting the overall system performance.

network resources by aiming at both spectral efficiency and
user fairness. We can formulate the optimization problem with
an Integer Linear Programming (ILP) model. The objective
function to be maximized, η̂, is the sum of the utilities of
the individual base stations. Following the max-min fairness
criterion, we define the utility of base station i as the rate
of user with the minimum number of exchanged bits in
the scheduling time horizon and formalize the problem as
follows:2

Problem BE:

maximize η̂ =
∑
i∈N

(
min
u∈Ui

∑
m∈M,t∈Z

Rm · xm,t
u

)
,

subject to
∑

u∈Ui,m∈M
xm,t
u ≤ yi,t, ∀i ∈ N , t ∈ Z,

P Gu,i

N0+
∑

k∈N :k 6=i

P Gu,k·yk,t
≥ γm · xm,t

u ,

∀i ∈ N , u ∈ Ui,m∈M, t∈ Z,
yi,t, x

m,t
u ∈{0; 1},∀i∈N, u∈Ui,m∈M, t∈Z;

where variables and parameters are defined exactly as in
Problem GBR. The set Z is the set of available TTIs for
best-effort traffic and it is defined as Z = {1, 2..., Z}. The
two sets of constraints correspond to the third and fourth
ones in Problem GBR. Note that the objective function is
not linear, therefore we handle it through standard max-min
linearization techniques. Problem BE can be reduced to a bin-
packing problem in which the sum of interferences cannot
exceed a threshold. Therefore, this problem is NP-hard [17].

As stated before, the solution of Problem GBR and Prob-
lem BE involves a very high overhead to deliver CSI informa-
tion to a centralized optimizer, which needs this information
to select the ABSF patterns and compute the user scheduling.
In addition, due to problem complexity, while the centralized
approach can be an attractive option for small networks, a
computationally less complex approach is required to deal
with the case of very dense wireless networks consisting of
hundreds of base stations and thousands of wireless nodes.

Accordingly, in the following section, we present a dis-
tributed and less complex approach to this joint problem in
order to abate and distribute the computational load over the
base stations. After analyzing the two problems individually,
we then propose a joint framework for both problems.

III. GUARANTEED TRAFFIC

We formulate the GBR problem in a distributed way by
splitting it into local problems that are solved by each base
station. To reduce complexity, each base station only optimizes
the scheduling of its own users and considers that other base
stations use fixed ABSF patterns. However, this approach
needs an iterative mechanism.

Each local optimization problem consists in minimizing a
cost function fi that accounts for both the number of locally
used TTIs and the total penalty related to unsatisfied local
demands. Variables and constraints are the same as in the
centralized formulation, except for two aspects: (i) the local
formulation considers only the users of the local base station,

2The selected objective function provides a trade-off between maximizing
the spectral efficiency and guaranteeing a minimum level of service quality.
Nevertheless, using a different objective function would not substantially
change the proposed approach and the following analysis.
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(ii) the activity of interfering stations in the SINR constraint is
no longer optimized, but given as input. The key idea behind
the distributed approach indeed affects only this constraint. In
fact, the exact knowledge of which users are scheduled by
other base stations is no needed, as the base station activity is
enough to compute SINR values. Therefore, it is sufficient to
know the activity patterns of neighboring base stations, namely
ABSF patterns, provided by binary vectors {Ak

t }. The formal
description of the distributed problem is as follows:
Problem GBR-DISTR (local, at BS i):

minimize fi =
∑

u∈Ui,t∈T
xmu,t + α

∑
u∈Ui

pu,

subject to
∑

t∈T ,m∈M
Rm · xmu,t + pu ≥ Du, ∀u ∈ Ui;∑

u∈Ui,m∈M
xmu,t ≤ 1, ∀t ∈ T ;

P Gu,i

N0+
∑

k∈N\i
P Gu,k·Ak

t
≥ γm · xmu,t,

∀u ∈ Ui, t ∈ T ,m ∈M;
xmu,t ∈ {0; 1}, ∀u ∈ Ui, t ∈ T ,m ∈M;
pu ≥ 0, ∀u ∈ Ui.

Each base station i is in charge of solving Prob-
lem GBR-DISTR by computing the optimal user scheduling
into available TTIs. Note that the solution of this problem
depends on the solutions computed by the other base stations,
since the SINR of each user is affected by the interference
generated by the other base stations when they are active.
Therefore, an iterative process is needed, which would ideally
converge to a quasi-optimal solution where base stations agree
on their respective ABSF patterns. However, the process could
not converge at all.

We now derive convergence properties and provide condi-
tions on the guaranteed convergence by casting the distributed
approach into a game. Once the convergence is guaranteed, we
finally present a practical distributed scheme that implements
the distributed approach.

Game Theoretical Analysis. We introduce a new class
of games, called Distributed Inelastic Games, to model the
interference coordination problem.

The game that describes our problem is represented by
means of a tuple Γ = (N , (Si)i∈N , (fi)i∈N ). The set of
players is N , i.e., the base stations. For each player i ∈ N ,
Si is a family of user actions, namely a strategy, and fi
is a cost function that expresses the cost associated to the
implementation of each action, i.e., fi is the utility function
in Problem GBR-DISTR. Each player i decides her action
in order to minimize the game cost function fi. Player i’s
action is a set of user-TTI pairs (u, t), which represents the
base station’s user scheduling in the ABSF time horizon. In
particular, a valid action is a scheduling that satisfies the
constraints of Problem GBR-DISTR. This defines the action
space Si from which user i selects her action Si. Note that
the cost of each action depends on the other players’ actions,
because of interference, so we use the notation fi(Si, S−i) to
indicate the dependency on the action of i as well as on the
actions of any other user, S−i.

With the above, the best response (BR) for game Γ is
defined as the action that produces the smallest cost function
value for player i, taking the other players’ actions as given.

Analytically, S∗i ∈Si is defined as BR if and only if

f(S∗i , S−i) ≤ f(Si, S−i), ∀Si ∈ Si. (1)

In the following, we present a convergence analysis of
game Γ, which is essential to ensure the feasibility and
implementability of the distributed version. Indeed, due to the
nature of the game, the arbitrary best responses taken by each
player may not necessarily lead to an equilibrium (i.e., a Nash
equilibrium); this is the case of game Γ and it is shown in the
proof of Theorem 1.

Theorem 1. Distributed Inelastic Game Γ does not possess
a finite improvement property in best-response improvement
dynamics.

Sketch of Proof: Consider a scenario with 2 TTIs and 3 base
stations, each of them associated with exactly 1 user. For each
player i, the only user can be scheduled in one or both TTIs,
so the valid action space Si is defined as follows:

S1 = {{u1, t1}; {u1, t2}; {(u1, t1), (u1, t2)}},
S2 = {{u2, t1}; {u2, t2}; {(u2, t1), (u2, t2)}},
S3 = {{u3, t1}; {u3, t2}; {(u3, t1), (u3, t2)}}.

Let assume a traffic demand Du = 5 units per ABSF cycle
(any unit can be used, e.g., Kbytes) and in a TTI a user obtains
the number of traffic units described in the following table:

alone with {ui+1} with {ui+2} all
ui 5.55 5.11 2.73 2.51

In the table above, i ∈ {1, 2, 3}, and user indexes x = i + 1
or x = i + 2 have to be computed as shifts on a cyclically
extended list of indexes. In this example, we also assume α =
1000.

Now we consider the sequence of actions taken by each
player, described in Table I. Whenever a player i chooses a
new action at step k, she uses the best response at that step,
which affects the traffic received by other users. In particular,
player i causes player i + 1 to incur a penalty because of
low throughput (2.73 units in a TTI and 0 in the other). So,
the affected player will switch scheduling TTI and get 5.11
units of traffic, which is enough to satisfy Du with a single
TTI, although this action will trigger the next player in the
list to do the same. This leads to a cycle of equal actions,
such as actions at step k and actions at step k + 6. Hence,
playing arbitrary best responses do not necessarily converges
to a Nash equilibrium in distributed inelastic games.

While the asymmetric scenario considered in the above
proof is quite unlikely in realistic LTE-Advanced environ-
ments, the theorem does nonetheless point out that the game
Γ may not converge in some critical scenarios, which may
create applicability problem if not properly fixed.

However, using a particular class of best responses leads to
an equilibrium 3. This particular best response set consists in
selecting among all possible best responses only those which
just add or remove at most one (u, t) pair, to the action of

3We implicitly assume that the scheduling of a user in a slot always results
in the transmission of an arbitrary small, but not null, number of bits. This
comes from the conventional requirement of a minimum guaranteed SINR
when a user is attached to a BS. Relaxing this assumption opens the possibility
to design uncommon pathological interference situations that might not lead
the algorithm to convergence.
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TABLE I: Example of dynamics of game states for a Distributed Inelastic Game Γ by adopting Best Response. Base stations
play sequentially: moves are indicated by using boldface fonts for the corresponding scheduling strategy and cost function.

step k − 1 step k step k + 1 step k + 2 . . . step k + 6
BS 1 {u1, t1}, f1 = 1 {u1, t1}, f1 = 2271 {u1, t2},f1 = 1 {u1, t2}, f1 = 1 . . . {u1, t1}, f1 = 2271
BS 2 {u2, t2}, f2 = 1 {u2, t2}, f2 = 1 {u2, t2}, f2 = 2271 {u2, t1},f2 = 1 . . . {u2, t2}, f2 = 1
BS 3 - {u3, t1},f3 = 1 {u3, t1}, f3 = 1 {u3, t1}, f3 = 2271 . . . {u3, t1},f3 = 1

the previous step. We call such set as Single-step set, SSS
i ,

and define it formally as follows. Starting from any action
S
(p)
i taken at the previous step p, SSS

i (S
(p)
i ) = {S ∈ Si :

(|S \ S(p)
i | ≤ 1) ∨ (|S(p)

i \ S| ≤ 1)}, where the ∨ symbol
is the OR operator. Now we can define a Single-step Best
Response (SSBR) move:

Definition 1 (SSBR). At step k, the Single-step best response
(SSBR) Ŝi

k
of player i is defined as a best response action

S
∗(k)
i such that S∗(k)i ∈ SSS

i (S
(k−1)
i ).

The above definition states that player i will play her single-
step best response by taking into consideration her action
played at the previous step and (i) removing one of the
(user,TTI) pair, (ii) adding just one additional (user,TTI) pair,
or (iii) following the previous action (if the cost function is
minimized for that particular action).

In order to prove that the convergence is guaranteed by
following the SSBR approach, we next introduce the concept
of action profile. Given a state of the game Γ at a particular
round, the action profile σ is the set of actions played by
each player in that round. When a player changes her action,
the action profile is updated. In the following, we define a
particular action profile, namely saturation action profile.

Definition 2. The saturation action profile is defined as an
action profile σ = [S1, ..., SN ] belonging to a set of saturation
action profiles ΣSAT , σ ∈ ΣSAT , where each player’s action
Si either (c.i) returns a cost function with a zero penalty, or
(c.ii) occupies all available W TTIs with a non-zero penalty.

Assuming that the players play their SSBR for a game Γ,
we can now formulate the following lemmas, whose formal
proofs are reported in the Appendix.

Lemma 1. Given that the players’ actions belong to whatever
action profile σ, after a finite number of single-step best
responses, all players’ actions will belong to a saturation
action profile σ.

Lemma 2. At a certain point in time, given that the actions
selected by any player in the system belong to a saturation
action profile σ, if each player chooses a single-step best
response, the game will converge to a Nash equilibrium.

Relying on such Lemmas, we can prove the following result.

Theorem 2. Game Γ possesses at least one Nash equilibrium
and players reach an equilibrium after a finite number of
single-step best responses.

Proof: We prove it by a constructive proof. Players start
playing a game Γ. Regardless of the starting action profile σ,
after playing a finite number of SSBR, the players’ actions
belong to a saturation action profile σ, as stated by Lemma 1.
Upon all players select an action belonging to a saturation
action profile, keeping choosing a SSBR, they will converge
in a finite number of steps to a Nash equilibrium according to

Lemma 2. Therefore, we can state that each game Γ admits a
Nash equilibrium, and players can reach such equilibrium.

The proof of the theorem is also confirmed by readily
applying the SSBR to the scenario presented in the proof of
Theorem 1. In that example, choosing the SSBR for all players
leads to fully schedule all available TTIs for every base station.

Interestingly enough, Theorem 2 also proves that players
can easily adopt a general best response strategy during the
game, with no convergence guarantees. However, if at a certain
point in time, they switch to SSBR strategy, they converge to
a Nash equilibrium with probability equal to 1. Clearly, if at
least one player is not playing SSBR, the game convergence
is no longer guaranteed.

IV. BEST-EFFORT TRAFFIC

We next present a distributed formulation of Problem BE.
Similarly to what presented in the previous section for the
inelastic traffic, here we formulate a distributed approach for
the scheduling of elastic traffic. Also in this case, the original
problem is split into several smaller instances, which are
solved locally by each base station. To solve a local problem
instance, a base station is provided with the activity pattern
declared by other base stations.

With the above information, and without explicitly forcing
any additional constraint, each base station i would schedule
users selfishly in the entire set of Z TTIs, in order to optimize
the local utility. Therefore, to avoid that base stations use
all available TTIs, in the distributed problem formulation we
grant a single base station i access to up to Mi TTIs over
Z available TTIs; such Mi value plays a key role in the
distributed mechanism, as it will be clarified in Section V-B.

The above description corresponds to the following instance
of the local problem for base station i, which can be formu-
lated as an ILP model as follows:
Problem BE-DISTR:

maximize η̂i = min
u∈Ui

∑
m∈M,t∈Z

Rm · xm,t
u ,

subject to
∑

u∈Ui,m∈M
xm,t
u ≤ 1, ∀t ∈ Z,

P Gu,i

N0+
∑

k∈N :k 6=i

P Gu,k·Ak
t
≥ γm · xm,t

u ,

∀u ∈ Ui,m ∈M, t ∈ Z,∑
u∈Ui,m∈M,t∈Z

xm,t
u ≤Mi,

xm,t
u ∈ {0; 1}, ∀u ∈ Ui,m ∈M, t ∈ Z;

where all parameters and constraints have the same meaning as
in Problem BE, except for the third constraint, which limits the
number of usable TTIs to Mi. Note that a feasible solution of
Problem BE-DISTR can be computed by using any available
max-min scheduling heuristic (see, e.g., [18]).

Following the local optimization problem presented above,
the interference coordination problem is solved in a distributed
fashion: each base station receives as input the ABSF patterns,
solves Problem BE-DISTR and provides in turn to other base
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stations its ABSF pattern. Other base stations update their
choices depending on the new ABSF pattern, communicate
back their new ABSF decisions and the process repeats.
However, this process may not converge.

Game Theoretical Analysis. The fully distributed approach
to best effort traffic scheduling can be analyzed by means of
well-known results offered by game theory. Specifically, the
distributed approach described above can be modeled as a
game where base stations iteratively play in order to maxi-
mize their utility. Let us define this game as an Interference
Coordination Game Ω, where each base station i acts as a
player. Similar to game Γ, the set of actions of each player
Si consists in the set of pairs (user, TTI), (u, t) ∈ Ui × T ,
available for each base station according to constraints in
Problem BE-DISTR. However, the cost functions in the two
problems are different.

In order to analyze the convergence of the game, we rely
on the concept of Bottleneck Matroid Congestion Game (for
further details we refer the reader to [19]). The latter is a class
of games in which resources are shared among players. The
utility of each player depends on the utility of the resources
she chooses and the number of players choosing the same
resources: the higher the congestion, the lower the utility.
In particular, the individual player utility is the minimum of
the utilities of the resources chosen in her action. Note that
the bottleneck behavior comes from the max-min objective
function of Problem BR-DISTR.

Congestion games can be generalized in player-specific con-
gestion games and weighted congestion games. In the former,
every player has her own utility function for every resource.
In a weighted congestion game, every player affects the other
players strategies with a different weight, namely, she causes
a different level of congestion. A thorough game-theoretical
analysis of Game Ω is not a specific contribution of this work,
since we have already provided it in [20]. Here we simply
recall the relevant results of [20], i.e.: (i) the Interference
Coordination Game Ω is a Weighted Player-specific Bottleneck
Matroid Congestion Game, and (ii) weighted player-specific
matroid bottleneck congestion games do not exhibit the finite
improvement property when using the best response. Therefore
the distributed approach may not converge. Moreover, the
solution of Problem BE-DISTR is biased by the Mi values.

In order to address these shortcomings, in the next section
we propose a semi-distributed two-level mechanism where an
overall supervisor guides the behavior of the distributed game,
using only resources not otherwise allocated to GBR traffic.

V. DISTRIBUTED MULTI-TRAFFIC SCHEDULING
FRAMEWORK

In this section we provide complete details on the proposed
framework for adaptive interference-aware scheduling. We
name our scheme Distributed Multi-traffic Scheduling (DMS).
DMS is based on the game theoretical framework introduced
in Section III and Section IV, and incorporates heuristic
approaches to jointly adapt the solutions of Problem GBR
and Problem BE to traffic changes. To cope with traffic and
network dynamics, a practical strategy consists in periodic
scheduling decisions, taken once per time horizon W (e.g.,
every ABSF pattern), to serve inelastic traffic demands and

best-effort data traffic within the ABSF pattern W . DMS
first accommodates inelastic traffic that exhibits very stringent
requirements. The remaining time portion is left for best-effort
traffic requests.

The first objective of DMS is to smartly optimize the
inelastic traffic period scheduling in order to maximize the
resource efficiency, while leaving more space for best-effort
traffic. To this aim, DMS includes a mechanism that adaptively
seeks the minimal number of TTIs to include in the inelastic
traffic period T ≤ W , so as inelastic traffic is served with
no penalties in the shortest possible time window. In this
article, we only consider scenarios where the inelastic traffic
can always be served strictly within the W horizon, otherwise
DMS would provide solutions in which the inelastic traffic
occupies every slot with non-zero penalty. This would leave
no room to best-effort traffic, preventing us from testing its
impact.

In the following we show that, with the game theoretical ap-
proach proposed, a lightweight supervisor suffices to solve the
inelastic period minimization problem by leveraging a simple
dichotomic search algorithm over several time horizons. Then,
DMS fully exploits the remaining time portion (e.g., best-effort
traffic period W−T =Z) to maximize the aggregate system
throughput for serving best-effort traffic. This is automatically
performed using a distributed mechanism without incurring in
a heavy centralized channel statistics collection. Please note
that our solution is practical and implementable: the local con-
troller is developed on the base station, e.g. the Radio Network
Controller (RNC) for UMTS architecture or E-UTRAN in the
LTE architecture, whereas the supervisor can be envisioned
as an SDN-based controller in charge of collecting channel
information and commuting simple decisions ([21]) or in
Cloud-RAN networks it can be integrated in the BaseBand
Unit (BBU). This is pretty in line with future networks design,
wherein Software Defined Network (SDN) paradigm is fully
applied to mobile networks [22].

A. Guaranteed traffic scheduling
For inelastic traffic demands, DMS focuses on two different

objectives. While the first objective is to fully accommodate
the guaranteed traffic demands into the available time horizon
T (Resource Allocation), the second objective is to iteratively
reduce the number of used TTIs in order to make an efficient
use of the time resources (Time Squeezing).
• Resources Allocation is completely executed into base

stations, each of which is in charge of jointly scheduling
local users and making ABSF pattern decisions, which
are exchanged with the other base stations through the
high-level supervisor (HS). Game Γ is used for the base
stations to accomplish this task in a coordinated way.

• Time Squeezing is executed at the HS. The HS collects the
traffic demand offered to the base stations and iteratively
adjusts the length of the time period T based on the ABSF
patterns announced by the base stations at the end of
game Γ, and on penalties they could have incurred.

Practically speaking, DMS operation starts when user traffic
demand changes in the cellular network, as illustrated in Fig. 1.
Initially, each base station provides the HS with its cumulative
traffic demand. The HS selects the initial time period as the
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Fig. 1: Two-level mechanism for guaranteed traffic. In the flow chart, the
entire flow of the program is represented as an iteration between the execution
of the Resources Allocation and of the Time Squeezing processes.

one that would guarantee traffic constraints without adopting
any interference coordination mechanism (T = W ). As a
consequence, the computation of assigned time resources is
initially overestimated. After that, DMS operation consists in
the interaction between the two aforementioned processes: the
Resources Allocation process and the Time Squeezing process.

Resources Allocation process: guaranteeing user de-
mands. During Resource Allocation, the number of available
TTIs T is fixed. Base stations cooperatively schedule their
own users into available TTIs in order to satisfy their traffic
demands. It is very important to note that the mechanism
perfectly complies with the requirements of the Distributed
Inelastic Game Γ presented in Section III. In particular,
each base station schedules its own users and communicates
corresponding ABSF pattern to the other base stations. Each
base station limits its activity and reduces the interference
caused to the other base stations by reducing the number of
occupied TTIs, as stated in Problem GBR-DISTR. The process
ends when a steady-state is reached, which always occurs
if SSBR is enforced, as proved in Section III. Eventually,
a steady state ABSF pattern for each involved base station
is notified to the HS. In addition, the Resource Allocation
process may output a set of non-zero user penalties, e.g., due
to a too large traffic to be accommodated in the time horizon
or to critical interference conditions. This event is promptly
handled by the Time Squeezing process described next.

Time Squeezing: adapt time period to demand. Time
Squeezing is based on a binary search scheme, as illustrated
in Fig. 1. The initial time period T is set equal to the ABSF
pattern length W , chosen as the number of TTIs needed to
guarantee the entire demand. Then, a binary search is used
to adapt the inelastic time period. At each step of the search
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Fig. 2: Hybrid two-level mechanism for best-effort traffic demands. In the
short-term level (bottom side of the figure), game Ω is played amongst the
base stations, while in the long-term level (top side) the high-level supervisor
decides the number of available TTIs per base station.

(e.g., at the beginning of each ABSF pattern W ), a new value
is chosen for the time period and it is applied by invoking the
Resource Allocation process. The Resource Allocation process
runs and returns ABSF patterns and penalties. If the sum of the
obtained penalties is equal to zero, meaning that user traffic
demands are completely satisfied and the time period may not
be fully utilized, Time Squeezing reduces the time period T for
the next ABSF pattern. If penalties occur, the process increases
the time period. The search ends if there are no penalties and
no unused TTIs, or after log2W steps: base stations keep using
the same inelastic traffic period for next ABSF patterns, unless
traffic demand changes.

Since during the Time Squeezing process a feasible value
(no penalties) of the time period T is always available,
the supervisor can command the base stations to apply the
corresponding ABSF patterns and transmission scheduling
without waiting for the convergence of the process. Hence,
although with the first applied ABSF patterns resources are
not used in a perfectly efficient way since T is larger than
necessary, the system is always able to guarantee the rates of
inelastic demand. However, as we will show in Section VI-A,
in practical scenarios it takes only a few iteration for DMS to
find efficient time periods.

B. Best-effort traffic scheduling
Building on the results of the previous section, DMS ex-

ploits the best-effort traffic period Z to maximize the overall
system throughput for serving best-effort traffic requests. The
DMS mechanism for best-effort traffic is depicted in Fig. 2.
As shown, the scheme operates at two different timescales:
• On a long-term timescale (in the order of seconds), HS is

in charge of adjusting the Mi value of each base station,
where Mi gives the maximum number of TTIs that base
station i can use to schedule its users within the time
horizon Z by solving Problem BE-DISTR. In addition,
adapting Mi allows the system to react to traffic changes.

• At a shorter timescale, base stations play the Interference
Coordination Game Ω by sequentially exchanging their
scheduling decisions in terms of ABSF patterns.
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Note that Game Ω is played in a sequential manner to provide
converge guarantees. The supervisor does not directly partic-
ipate in the game, but it controls its convergence by limiting
the number of iterations. The challenge for the coordinator-
aided approach is the design of the algorithms executed by
the supervisor to (i) ensure convergence, and (ii) adjust the
values Mi. In the following we address the design of those
algorithms, which aim at driving the system behavior to an
optimal state in the long run.

Convergence control of game Ω. In order to guarantee the
convergence of the game, the supervisor imposes a deadline
of Ẑ TTIs, with Ẑ < Z < W : if the game has not finished
by this deadline, it is terminated by the HS.

When the game finishes before the deadline, the resulting
scheduling corresponds to an equilibrium of the game, which
ensures that resources are fairly shared among base stations.
In contrast, when the game is terminated by the supervisor,
base stations use the scheduling that they computed in the
latest iteration of the game, which does not correspond to an
equilibrium. Thus, in the latter case some base stations could
potentially have a better scheduling (i.e., more resources) than
the others. However, as shown by our results of Section VI-B,
we have observed that in practice the game can be interrupted
after only a very few iterations without negatively impacting
fairness or performance in a significant manner.

The deadline Ẑ is chosen in order to have a valid scheduling
before the current period Z finishes: the resulting scheduling
(and the corresponding ABSF pattern) will then be used for
the next period. During the game, transmissions and users are
scheduled according to the result of the previous period. Note
that the iterations of game Ω, as it is in game Γ, do not
need to be synchronized with the TTIs; they can be much
faster, allowing for more than Z iterations within Z TTIs.
Indeed, the execution of one iteration only requires passing
the “current” ABSF patterns from one base station to another.
As shown in Section VI-B, deadline Ẑ can be chosen in the
range [|N |, |N |2].

Dynamic adjustment of TTI bounds Mi. One critical
aspect for the performance of the proposed mechanism is the
setting of the Mi parameters, which give the maximum number
of non-blank TTIs available to each base station. Indeed, if the
Mi values are too small, performance is degraded because,
even if base stations can be scheduled one at a time with
low interference, the number of TTIs available for transmitting
can be too small to accomodate all users. Conversely, if the
Mi values are too large, performance is degraded as a result
of too many base stations scheduled together and interfering
each other. Thus, performance is maximized when the Mi

parameters are optimally set to values that are neither too large
nor too small. In the rest of this section, we design an adaptive
algorithm that follows an additive-increase multiplicative-
decrease (AIMD) strategy [23] to find the optimal Mi setting.

In addition to optimally setting Mi to improve the per-
formance of the network, the adaptive algorithm also aims
at dynamically adjusting the Mi configuration to follow the
changes in traffic and interference. From this perspective, the
adaptive algorithm is a long-term process. In contrast, the
distributed game is a short-term process played once per each
period of W TTIs. This implies that the duration of the period

W cannot exceed a few hundreds frames, which corresponds
to a few seconds during which traffic and average channel
conditions remain practically unchanged.

From a high level perspective, the algorithm works as
follows. At the end of each period of W TTIs, i.e., after the BE
traffic serving period Z, the supervisor gathers from the base
stations the performance resulting from the Mi values (and
the corresponding ABSF patterns) used during the period. The
metric used to represent the performance of a base station in
terms of elastic traffic is given by the average quantity of traffic
served per each of its users in the interval Z. If we denote by
cu,t the traffic served for user u in TTI t, the metric defined
above is simply expressed as follows:4

ηi =
1

|Ui|
∑

(u,t)∈Ui×Z

cu,t, ∀i ∈ N . (2)

The supervisor then uses the sum of the individual perfor-
mance metrics, η =

∑
i∈N ηi, to keep track of the global

system performance and drive Mi to the setting that maxi-
mizes η. The algorithm to find such Mi setting follows an
AIMD strategy: the Mi values are linearly increased as long
as performance is improved, and, when performance stops
improving, then the Mi values are decreased multiplicatively.
After each update of the Mi values, these are distributed to
the base stations and used in the following period (i.e., the
following iteration of game Ω).

The specific algorithm executed to calculate the new set of
TTI bounds Mi is described in Algorithm 1. Each iteration
of the algorithm is identified by an index k. At the initial
step (k = 0), the supervisor initializes the system perfor-
mance metrics η to 0 and assigns the initial TTI bounds
M∗i = dZ/|N |e for every base station. This initial M∗i
setting has been chosen to allow base stations to schedule
their users in disjoint portions of the period, which helps the
convergence of the algorithm in case of very high mutual
interference between all base stations. The M∗i also provides
a lower bound for Mi.

At each step, the supervisor collects the performance metrics
ηi from base stations and checks whether the performance of
this period, η(k), has improved with respect to the previous
period, η(k−1) (line 3). If this is the case, the system perfor-
mance is raising and the supervisor increases TTI bounds Mi

as follows. The supervisor increases by 1 unit the Mi of the
base station with the smallest ηi whose Mi is below Z (lines
8-9). Once one Mi value is increased, step k of the algorithm
terminates (line 10).

If no Mi can be increased, which means that all base stations
are active in all TTIs, then no adjustment of the Mi values
is made as long as the system performance does not degrade.
In case performance degrades, i.e., η(k) decreases, (line 13),
the supervisor drastically reduces the Mi. Specifically, the
supervisor looks at the base station i with the largest ηi whose
Mi is above M∗i . It sets the new Mi value of this station equal
to the minimum between the half of the current Mi value and
the lower bound M∗i (lines 17-18). If Mi = M∗i for all i, no
change is applied.

4Note that, since user allocation is carried out according to Prob-
lem BE-DISTR, the max-min objective tends to assign rates with limited
variance; as a consequence, the average user rate and the rate of the worst-off
user are likely to be similar.
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Algorithm 1 Resource Sharing Algorithm: Adaptive algorithm to
dynamically design Mi. Called at the end of (k−1)th ABSF pattern

Input: N , Z,M∗i ,M
(k−1)
i , η(k−1)

Initialization: η(k) ← 0;∀i ∈ N
Procedure

1: V ← {ηi, ∀i ∈ N}, ηi collected from base stations
2: S = sort(V , non-increasing)
3: η(k) =

∑
i∈N

ηi

4: if η(k) > η(k−1) then
5: while S 6= ∅ do
6: e = pop(S)
7: Consider index i in set V of element e
8: if M(k−1)

i < Z then
9: M

(k)
i = M

(k−1)
i + 1

10: break
11: end if
12: end while
13: else
14: while S 6= ∅ do
15: e = pop(S)
16: Consider index i in set V of element e
17: if M(k−1)

i > M∗i then
18: M

(k)
i = max

{
M∗i ;

⌈
M

(k−1)
i /2

⌉}
19: η(k) = 0
20: break
21: end if
22: end while
23: end if

The rationale behind using AIMD to adjust the Mi values
is that, similar to what happens with Transmission Control
Protocol (TCP), increasing the utilization of the system (i.e.,
increasing Mi values) may lead to congestion (in our case,
this corresponds to excessive interference), which causes user
rate drops. In this case, a quick reaction is required by the
supervisor to drive the system to a safe point of operation
by properly adjusting TTI bounds Mi. Also similar to TCP,
the additive increase of TTI bounds Mi allows to gracefully
approach the optimal utilization of the system. Furthermore,
since the problem may admit more than one local maximum,
using multiplicative decrease for the TTI bounds Mi helps
our heuristic to escape from a local maximum where the
optimization function may be trapped in.

As a side comment, we point out that the proposed algo-
rithm could accommodate different goals, such as, e.g., maxi-
mum throughput or proportional fairness, by simply replacing
the function that gives the global system performance, η, by
another function that reflects performance according to the
objective pursued.

C. DMS Control overhead
In DMS, guaranteed and best-effort traffic procedures rely

on the same exchanged information (ABSF patterns) with
additional bits needed: for BE, to notify the base station
performance ηi to the supervisor and dispatch parameters Mi

in the opposite direction, while for GBR, to inform about
potential user penalties pu. We can identify two different
interfaces: one between supervisor and base stations, namely
IC , and one between base stations, namely IB . Counting
the number of messages crossing each interface, we can
estimate the required overhead carried by the backhauling/core
network.

In order to make a fair comparison between an adaptive
algorithm, like DMS, and a static centralized approach, we

TABLE II: Overhead of centralized and DMS semi-distributed
approaches

Interface Centralized approach DMS approach
IC B · |U| · |N |+W · |N | 2B · |N |+B · |U|
IB 0 W · k · |N |

have to consider a scenario where a centralized solution is
computed at the beginning of each time horizon: a snapshot
of the operation environment is used for computing optimal
ABSF patterns. Therefore, we compare the number of ex-
changed messages in both approaches in one of those horizon.

In the centralized solution, the supervisor requires message
exchanges over IC only. In particular, per each pair (user, base
station), it requires the transmission of an average channel
quality indicator which can be encoded with B bits. Then, the
supervisor issues a scheduling pattern (a string of W bits) to
each base station.

In the DMS mechanism, the supervisor requires the average
user rate ηi per base station over IC at the end of each game
Ω for best-effort traffic only, consisting in a binary string of
B bits. Through the same interface are sent parameters Mi

to each base station and collected per-user penalties pu in
GBR, encoded with B bits as well. Regarding the interface
IB between different base stations, DMS needs a sequential
exchange of ABSF patterns (strings of W bits) during the
interference coordination games Γ and Ω, until both games
reach a convergence state or the convergence deadline expires.

We can therefore summarize the total load in terms of bits
for each interface as reported in Table II. In the table, k is the
number of rounds the interference coordination game plays
before reaching the convergence, and |U| =

∑
i |Ui| is the

total number of users in the system. We can easily observe that
the overhead of DMS is lower than the one of the centralized
mechanisms when the following inequality holds:

|U| > 2B · |N |
B(1 + |N |)

+
W (k − 1)|N |
B(1 + |N |)

∼=
W |N |2

B
, (3)

where we have considered that the number of rounds k in
the worst case is a function of |N | (i.e., at most k = |N |2
iterations are enough to converge, when convergence exists,
as proven mathematically in [19] and empirically shown in
Section VI-A and Section VI-B) and both W and |N | are
(much) greater than 1. Therefore, our approach is convenient
as soon as the number of users exceeds a threshold that
depends on W , B, and |N | (i.e., the threshold is O

(
W |N |2

)
).

For example, in an (sub-)urban environment with W = 70,
|N | = 7 and double precision floating point values, B = 64,
DMS results convenient with as few as 54 users or more, while
in a dense-urban environment with |N | = 28, our approach
exhibits a practical implementation starting with ∼900 users
in the entire network. Those values are pretty low, revealing
how our approach drastically reduces the signaling overhead
for realistic cellular network sizes.

Although we propose a high-level technology-independent
analysis, we point our that DMS framework is compatible with
the SDN paradigm [24]. Moreover, interfaces IC and IB may
be implemented using, e.g., the standard X2 interface [4].
Since only ABSF patterns, penalty indicators and experienced
rates need to be exchanged in addition to the measure of traffic
demands received by each base station, the X2 interface could



10

TABLE III: List of Parameters for the LTE-A wireless scenar-
ios used in the experiments [ITU UMi channel model]

|N | Number of Base Stations 7 or 28
|Ui| Number of UEs per Base Station 10− 50
W ABSF Pattern Length 70 TTIs
BW Spectrum Bandwidth 20 MHz
P Transmitting Power 30 dBm
ISD Inter-Site Distance 80 or 200 m
N0 Background Noise 8.28× 10−14 mW

be adopted as Southbound interface in an SDN implementation
of DMS with simple modifications.

VI. PERFORMANCE EVALUATION

In this section, we use numerical simulations to show that
our mechanism performs near optimally and boosts achievable
rates in the whole network, not just for topologically disadvan-
taged users. First, we present a simulation-based performance
evaluation in which guaranteed traffic and best-effort traffic
are independently served. Then, we show how DMS jointly
handles both traffic types, exhibiting outstanding results.

All simulations are carried out by means of
MATLAB R© with all parameters summarized in Table III.
Specifically, we tested two scenarios: a “standard” scenario
with a 7-base-station network deployed in an area of
300 m×500 m, and a “dense” scenario with 28 base stations
in the same area. In both scenarios, base stations are
deployed according to a hexagonal grid.5 The coverage
of each base station is computed as a Voronoi region,
assuming all base stations use the same transmission power
P = 30dBm. Although the scenario with 28 base stations
somehow includes the one with 7—as ABSF could be used
to blank all but 7 base station in the denser scenario—we
keep the two scenarios separated to analyze in a clean
way the impact of both the number and the distance of
interferers. Moreover, for the 7-base-station scenario, we
are able to find and then compare optimal solutions with
DMS solutions. Users are randomly dropped in each cell,
according to a uniform random distribution. The average
quality of the user channel is computed as function of the
distance from the base station (according to the propagation
model provided by 3GPP specifications, Table A.2.1.1-3 of
TR.25.814 v7.1.0), and Rayleigh fading is considered. Based
on user channel qualities, each simulated base station solves
Problem BE-DISTR or Problem GBR-DISTR by means of a
remote call to a commercial solver, i.e., IBM CPLEX OPL R©.

A. Guaranteed traffic Management
Here, we consider a variety of traffic demands and user

distributions when DMS only handles guaranteed traffic re-
quests. We show that DMS (i) fully serves guaranteed user
traffic demands, (ii) minimizes resources used and make
them available for best-effort traffic, and (iii) performs close
to the bound corresponding to the ideal centralized scheme,
presented in Problem GBR in Section II-A. Finally, we show
the rate of convergence of Distributed Inelastic Game Γ

5This assumption is rather common when carrying out a detailed simulation
campaign with a significant number of base stations. However, it does not
impact on the overall performance as our solution relies on an automated
interaction between neighbouring cells, without any regards about the cell
positions (such as hexagonal or PPP-based).
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Mbps per GBR user and 7 base stations (inelastic traffic period T embedded).
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timal results are obtained only for few points due to the problem complexity.

proving that convergence is always achieved even in hostile
cellular environments.

Time-resources performance. To achieve traffic guaran-
tees, we apply our DMS mechanism on the two scenarios de-
scribed above, where all users in the network have subscribed
a guaranteed bit-rate contract. For the sake of completeness
we have simulated unbalanced scenarios where each base
station exhibits a different GBR user demands. However, due
to lack of space we have placed this additional results in the
Appendix, further confirming the convenience of our approach
showing near-optimal results without unveiling any critical is-
sue. Furthermore, we benchmark DMS against “Centralized”,
an omniscient centralized approach able to optimally solve
Problem GBR in the smallest possible number of TTIs, and
“Legacy” in which base stations are always active and inde-
pendently schedule their users. Initially, the guaranteed traffic
period is set equal to the ABSF pattern W = 70. Iteratively,
DMS reduces the guaranteed traffic period while guaranteeing
the required traffic. Presented results are averaged over 1000
random instances.

We study the amount of used resources under different
network conditions in Fig. 3 and Fig. 4. They show the average
number of TTIs used by each base station, normalized to the
overall number of occupied TTIs in the considered approach.
In addition, we have added the standard deviation by means of
error bars and the total number of TTIs required to satisfy all
user traffic demands T . The resulting value is a time-utilization
index, which tells us how much each TTI is used by every
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TABLE IV: Study of convergence of game Γ with different
densities and and inter-site distances
```````̀BS spacing

#Users/BS 10 20 30 40

100 m 29.231 (±0.1) 30.105 35.422 35.419
200 m 7.111 (±0.01) 10.708 15.188 17.495
500 m 7.108 (±0.01) 9.676 15.951 15.217

1000 m 6.941 (±0.05) 7.155 7.244 7.239

base station in the network. The index ranges between 1/|N |
(marked as Lower Bound), when base stations use resources in
a TDM-like way, and 1, like in the legacy scheme. The results
are in line with our expectations. Considering a network with
a very small user population, inter-cell interference is limited
and the time-utilization index is close to its maximum (92.72%
for Centralized and 92.64% for DMS). Conversely, for large
user populations the overall interference grows and base sta-
tions are forced to transmit disjointly over the ABSF patterns
(45.65%, 23.11%, 18.23%, 16.3% and 15.15% for Centralized
and 46.49%, 29.72%, 20.93%, 18.42% and 18.99% for DMS).
Fig. 3 shows that DMS is near-optimal, while the legacy
approach wastes wireless-resources allowing base stations to
be active all the time. Moreover, the figure confirms that
DMS is not an excessively conservative approach, since it
allows each BS to use slightly larger number of TTIs with
respect to the operation of the optimal scheme. Fig. 4 shows
a similar performance in the dense scenario (79.81%, 32.14%
for Centralized and 82.31%, 37.17% for DMS). However, we
could optimally solve Problem GBR only for a small number
of users per base station. The complexity of the centralized
formulation is so high that we could not find a solution in a
reasonable time for more than 10 users per base station.

In general, presented results confirm that DMS applied to
guaranteed traffic substantially outperforms the legacy solu-
tion and exhibits near-optimal performance. The difference
between our approach and the centralized scheme is typically
very low (a few percent) and it is within 15% in all cases.

Convergence study of game Γ. From the theoretical analy-
sis presented in Section III, the Distribute Inelastic Game Γ is
guaranteed to converge by using SSBR, although it could very
likely converge also by using a simple BR approach. Here, we
experimentally evaluate the convergence properties of Γ by
simulating several network topologies wherein different net-
work densities and inter-site distances are considered. In order
to keep the computational cost affordable we only evaluate the
7-base-stations scenario assuming that our approach is applied
to a cluster of cells for a dense scenario. Table IV summarizes
the results obtained for the standard scenario in terms of k,
the number of rounds the game needs to converge by using
BR for at most N2 rounds and switching to SSBR afterwards,
if needed. Similar conclusions can be drawn in the very dense
scenario. The results are averaged over 1000 simulations per
each single case. It is important to note that k decreases with
the distance between BSs. This is due to the nature of inter-
cell interference. The closer base stations are placed, the more
the interference grows and the higher the number of rounds
needed for Γ to converge. The dependence of k on the user
population is not clear but it is possible to state that k roughly
grows with the population size. Interestingly, the number of
rounds k that we have observed ranged from about N to a
maximum value which is lower than N2 while the average
reported in the table is of the same order of N .

Moreover, it is worth pointing out that only for 3 cases out
of 1000 simulations the game Γ did not reach the convergence
by using the BR strategy, thus forcing players to use the SSBR
strategy, as explained in Section III. SSBR is supposedly slow
to reach convergence if used from round 1, however, it can
readily lead to game convergence in a few rounds after BR
has been played a few times. Specifically, in our simulation,
about N2 rounds with BR, followed by at most N rounds
with SSBR, were sufficient to reach convergence in all cases.
These results confirm not only that convergence can be always
achieved, but also that the BR strategy typically ensures the
game convergence, with no need to force base stations to
use the SSBR strategy since the beginning. In practice, we
suggest to use the BR strategy during the first N2 rounds of
the game, and, if the game did not converged, switch to the
SSBR strategy at round N2 + 1. With the above, the entire
game will converge in a number of rounds O(N2).

B. Best-effort traffic Management

Once guaranteed traffic is properly accommodated within
the ABSF pattern W , the unused TTIs are fully assigned for
serving best-effort traffic. In the next set of simulations, we
show how DMS handles the best-effort traffic given a fixed
number of available TTIs Z < W .

First, we benchmark DMS against the optimal solution
obtained by solving Problem BE by means of an ILP solver.
Additionally, we compare DMS to a traditional “Frequency
Reuse 3” scheme, in which the available band is split into three
orthogonal sub-bands, and to the already mentioned “Legacy”
case. Finally, for the sake of completeness, we compare DMS
with two existing approaches based on power control schemes,
showing how DMS can achieve high network performance
at a bargain price of complexity. In the first scheme, namely
Utility-Based Power Control (UBPC) [14], base stations are al-
located in all available TTIs by properly tuning the transmitted
power to reduce interference. The algorithm suggested in [14]
maximizes the user net utility by ensuring that the signal-
to-noise-ratio of each transmission is greater than a minimum
threshold γi (in our simulations we assume γi as the minimum
MCS with nonzero rate). While UBPC provides a rigorous
centralized solution for the power allocation problem at the
expense of a huge amount of information exchanged, a second
power control scheme recently developed, namely REFerence
based Interference Management (REFIM) [15], proposes a
low-complex distributed scheme by exploiting the notion of
reference user (e.g., the user with the worst channel condition
belonging to the surrounding cells). Although this abstraction
leads to a drastic reduction of the control signal overhead
and results in a practical implementation of the power control
solution, it exhibits a conservative behavior.

Utility and fairness performance. We start evaluating
the system utility η̂, which, according to the formulation of
Problem BE, is the sum of minimum user rates experienced
at each base station. Fig. 5 shows η̂ for the above-described
28-cell scenario when different schemes are applied.

Due to the adaptive nature of our algorithm, DMS shows
a dynamic behavior. Specifically, it takes a few seconds for
DMS to reach its stable operating point, after which it follows
quite fast the evolution of channel and traffic conditions. In
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Fig. 5: Dynamic behavior of DMS for best-effort traffic applied to a dense
scenario. In the first part, the scenario includes |N | = 28 base stations,
|Ui| = 20 users and Z = 140 TTIs. A network change increases the number
of users up to |Ui| = 30 users and then back again to |Ui| = 20 users.
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Fig. 6: CDF of average user rates with 28 base stations and 20 BE users
per base station. The time horizon is set to Z = 140 TTIs.

particular, at time t=16 s, the number of users in the network
increases by 50%, but it takes only a fraction of a second for
DMS to adapt. The same happens at t=21 s, when the number
of users returns to the initial value. In general, DMS largely
outperforms the Legacy scheme and achieves significant gain
over Frequency Reuse 3, being much closer to the optimal
performance. Notably, after the initial adaptation period, the
utility achieved by DMS is more than 90% of the one achieved
with the optimal solution for Problem BE. REFIM and UBPC
results show the real potentials of power control schemes.
UBPC can very closely match the performance of the optimal
solution without power control, although it requires higher
complexity in terms both of execution and device hardware.
REFIM, despite being a conservative low-complexity scheme,
shows a better performance than Frequency Reuse 3. Our
DMS approach perfectly lies in between an unviable efficient
power control scheme and a practically doable distributed
power control solution. Therefore, considering the complexity
of power control schemes, DMS can provide a practical and
advantageous trade-off between performance and complexity.

Besides utility η, we want to evaluate the fairness achieved
by the different schemes. To this aim, Fig. 6 presents the CDF
of achieved user rates (averaged over the time horizon W ). The
figure clearly shows that the optimal centralized solution and
UBPC can achieve higher user rates, while Legacy, Frequency
Reuse 3, and REFIM cannot fully support this dense network
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Fig. 7: CDF of number of rounds needed for game convergence with 28
base stations and different user populations.

scenario. DMS provides intermediate user rates, however, it
has the strong advantage of presenting them in a compact
interval of possible values, which is symptom of fairness.
Moreover, although the dense scenario causes high congestion,
DMS can provide a boost to the critical rates experienced by
the users. For instance, with 90% probability, DMS guarantees
2.1 Mbps per user, UBPC guarantees 1.8 Mbps per user,
REFIM guarantees 1.3 Mbps per user, while Frequency Reuse
3 only guarantees 0.8 Mbps.

Convergence study of game Ω. A key feature of DMS
is its ability to quickly adapt to network changes. Such a
feature relies on a fast ABSF pattern computation, which
follows the rule of the Interference Coordination Game Ω, and
on convergence guarantees. Interestingly, Fig. 7 illustrates the
CDF of the number of rounds needed to converge for different
user populations. Please note that in the dense scenario DMS
approach is distributively applied to a cluster of 7 base stations
in order to keep the computational burden feasible. Therefore,
as shown in the figure, the majority of the games Ω converge
much before |N |2 rounds (vertical line in the figure), and very
few cases do not converge at all. Simulations also show that the
rate improvement beyond the |N |2-th round is very limited.
Therefore, we can conclude that reasonably high utilities can
be achieved by stopping the game after a number of rounds
comprised between |N | and |N |2.

Overall, when best-effort traffic is involved, our results show
that DMS not only achieves near-optimal results according to
the definition of utility given in the formulation of Problem BE,
but also achieves high levels of fairness, and significantly
boosts average rates in the entire cellular network.

C. Multi-traffic Management
We have carried out an empirical evaluation to show how

DMS can minimize the time needed to fully serve guaranteed
traffic and simultaneously optimize the scheduling of best-
effort traffic demands in the remaining part of the ABSF
pattern. Fig. 8 and Fig. 9 show two representative examples
of obtained results. We consider the DMS mechanism for
guaranteed traffic always applied, while alternative approaches
are evaluated for best-effort traffic. Indeed, since the mecha-
nism for guaranteed traffic has been exhaustively evaluated in
Section VI-A, the goal of these experiments is to show that
GBR and BE algorithms can dynamically interact to optimize
the exploitation of available resources.
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Fig. 8: System throughput of DMS for both guaranteed and best effort traffic
in the standard network scenario.

In Fig. 8, we consider a scenario with 7 base stations and
a total of 70 GBR users each requiring 4Mbps, 140 BE
users, and a time horizon of W = 70 TTIs. At t = 119s,
the scenario changes by varying the GBR users’ demands
from 4Mbps to 5Mbps. In Fig. 9, the scenario is much
denser, having 28 base stations, 560 GBR users with a 2Mbps
demand, and 140 BE users. The time horizon is W = 140
and users’ demands change from 2Mbps to 2.5Mbps. The
different parameter is required to make the traffic demand
feasible for the available network capacity in such a dense
condition. Both figures report four curves: “GBR (DMS)”
refers to the total throughput of guaranteed-traffic users using
DMS guaranteed traffic mechanism, “BE (DMS)” refers to
the total throughput of best-effort users considering both the
current DMS allocation for guaranteed traffic and the iteration
of BE mechanism, “BE (Legacy)” considers the current DMS
allocation for guaranteed traffic and the Legacy approach for
the best-effort traffic, “BE (Centralized)” still considers the
current DMS allocation for guaranteed traffic, while providing
the centralized optimum of Problem BE for best-effort traffic.

The figures show that: (i) guaranteed traffic is always served
providing the requested throughput and (ii) DMS finds the
optimal number of TTIs to fully accommodate the guaranteed
traffic after few seconds, thus it dynamically schedules the
best-effort traffic. DMS dramatically outperforms the legacy
approach by unveiling near-optimal results when the game Ω
convergence is reached. Once the traffic demand of guaranteed
traffic users increases at t = 119s, DMS reserves the full
ABSF pattern for the GBR leaving no space to best-effort
demands. Then, the optimization restarts, showing outstanding
results w.r.t. a legacy solution and closely following the
optimal results derived by the centralized Problem BE.

We can finally state that the advantage brought by DMS is
threefold: (i) near-optimal results are easily achieved after few
seconds without requiring high-complexity solutions, (ii) the
overall system capacity is drastically increased due to a smart
usage of system resources and to a strong limitation of the
inter-cell interference, and (iii) it can easily adapt to scenario
changes supporting guaranteed traffic and smartly managing
best-effort requests.

VII. RELATED WORK

The ABSF technique is becoming popular because it is
suitable for eICIC in LTE, it requires minimal changes in the
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Fig. 9: System throughput of DMS for both guaranteed and best effort traffic
in the dense network scenario.

operation of base stations and offers flexible tools to trade-
off between performance improvement and implementation
complexity [25], [26]. However, designing a mechanism to
drive ABSF decisions has turned out to be challenging and
multifaceted. For instance, the authors of [27] have studied
quantitative approaches aiming to determine the best density
of blanked subframes as a function of the traffic distribu-
tion. Other studies focus on heterogeneous scenarios where
a macro base station and several small base stations have to
coordinate their activities using ABSF patterns [28], [29], [30].
Also, ICIC approaches in time domain have been investigated
in [31]. Other proposals include access selection in the loop
and introduce the concept of Cell Selection Bias [32], which
improves network spectral efficiency [11], [12]. However,
existing ABSF solutions either require a central entity to gather
per-user CSI or need additional and continuously updated
information on, e.g., topology and propagation environment,
which goes beyond current base station’s features and capa-
bilities. As a result, existing ABSF solutions are not scalable
and do not adapt quickly when network conditions change.

Some other solutions for resource management behave
similarly to ABSF. For instance, a recent proposal for OFDMA
femtocells has been presented in [33]. Although the authors
do not explicitly use the ABSF paradigm, their work is based
on detecting the best region of the time-frequency space
where base stations can transmit, like in ABSF. However, they
propose a probe-and-adapt algorithm to decide whether to use
or blank resources. Moreover, they do not require coordination
between base stations, which would yield performance limi-
tations. Similarly, the authors of [34] propose the concept of
reuse patterns for base station activities, which clearly mimics
ABSF operations. However, their work focuses on finding the
best temporal duration of reuse patterns (in order to maximize
the total user throughput) but it does not explain how to
generate reuse patterns. Moreover, differently from DMS, the
proposal presented in [34] does not take into account fairness.

The authors of [35] present a game theoretical approach to
ICIC. Their approach addresses the coordination among base
stations over a set of finite resources as a non-cooperative
game. However, they only target the minimization of the
perceived interference, and do not take into account user
scheduling.

None of the above proposals embodies the set of features
that characterize our approach and can be summarized as
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follows: (i) the distributed ABSF interference coordination
problem has been formalized and its convergence investi-
gated, (ii) the proposed mechanism is semi-distributed and
the complexity of the centralized coordination is abated and
split among base stations requiring little signaling exchange
with the central coordinator, (iii) the proposed mechanism
is adaptive and can adjust its parameters according to traffic
dynamics, (iv) despite the simplicity of the proposed mecha-
nism, our results show remarkable near-optimal performance
figures and, (v) at best of our knowledge, there is no literature
on the use of ABSF techniques for properly serving inelastic
traffic.

VIII. CONCLUSIONS

In this paper, we have presented the design of DMS, a
practical (distributed and lightweight) approach to optimize
inter-cell interference coordination for both guaranteed traffic
and best-effort traffic. To design this approach, we have
formulated two optimization problems, one for each traffic
type, relying on game theory notions. We have then proposed
distributed algorithms to solve these optimization problems,
and have further conducted analysis to prove the convergence
and stability of these algorithms. As a result, with our approach
base stations make scheduling decisions for serving guaranteed
traffic by using as few TTIs as possible, leaving the room for
best-effort traffic, which is efficiently served.

Due to the simplicity of our approach and its limited control
overhead, this is to the best of our knowledge a first attempt
towards an efficient, scalable and adaptive implementation of
ABSF that simultaneously addresses multiple traffic types and
provides a viable solution to be deployed in real networks. Our
numerical results show that DMS achieves near-optimal results
with respect to a centralized omniscient network scheduler,
and achieves performance levels similar to schemes relying
on complex power control functionality.
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Lemma 1. Given that the players’ actions belong to whatever
action profile σ, after a finite number of single-step best re-
sponses (SSBR), all players’ actions will belong to a saturation
action profile σ.

Proof: We prove the lemma by contradiction. Let us
define two sets of players that represent the state of the game
at a given point before reaching a saturation action profile
σ. Specifically, set P includes all players that have penalties,
and set P̄ includes the remaining players, which incur zero
penalty. Assume now that all players switch to Single-Step
Best Response (SSBR) at a given point in time, and consider
the composition of P and P̄ at that point.

If the lemma were incorrect, the game could evolve from
this state and at least one player could not reach a saturation
action profile σ. This possibility implies that sets P and P̄
are always nonempty at the end of each round of the game.
If not, the evolution of the game would lead to have either
case c.ii, in which all players use all the TTIs (all players
being in P would cause a progressive increment in the use
of TTIs until all TTIs are used by all players) or case c.i, in
which all players incurr no penalty (all players in P̄ would
reduce the use of TTIs as much as possible, without incurring
in penalties).

Moreover, there must exist a continuous flow of players
moving between P and P̄ while the game evolves. In fact,
should the flow stop after a finite number of actions, all players
in P would increase the number of TTIs used until they reach
the maximum (because they have penalties to pay), and all
players in P̄ would decrease the number of TTIs used without
incurring any penalty. However, by definition, this would be
a saturation action profile σ.

Therefore, to admit that SSBR does not lead to a saturation
action profile, we have to admit that players action continu-
ously move between P and P̄ . Moreover, since the two sets
have to remain nonempty at the end of any round of the game,
the flows of players from P to P̄ and vice versa have to be
balanced. With two possible states, this also implies that the
probability to be in P is the same as the probability to be in
P̄; therefore, the average sojourn times of a player in P and
P̄ are the same.

In particular, let us consider a player p that keeps moving
between P and P̄ , and let us call d the average time spent
in each of the two states. Let us consider a cycle of player
p, from her passage to P to her return to P̄ . In the transition
P̄ → P , p will increase the TTI utilization by 1 unit, to try
to come back to P̄ immediately. Then she will spend d − 1
rounds in P , during which she increments by d− 1 units her
TTI utilization. Afterwards, p goes back to P̄ , which can occur
with an increase of one TTI or with no changes (because of
other player’s changes of action). Eventually, player p will
spend d−1 rounds in P̄ , during which she will decrement the
TTI utilization by at most d−1 units. The resulting balance is a
net increase in the number of used TTIs. Therefore, all players
moving continuously between P and P̄ should eventually end
up using all the available TTIs and have no way to further
change their action profiles. Hence, the flow between P and

P̄ would stop. This would lead again to a saturation action
profile σ.

Lemma 2. At a certain point in time, given that the actions
played by any player in the system belong to a saturation ac-
tion profile σ if each player chooses a single-step best response
(SSBR), the game will converge to a Nash equilibrium.

Proof: We can derive from Problem GBR-DISTR the cost
function fi related to a player action Si and the actions taken
by the other players (S−i) as follows

fi(Si, S−i) = |Si|+ α ·
∑
u∈Ui

ρu(Si, S−i), ∀Si ∈ Si;

ρu(Si, S−i) = max

Du −
∑

(u,t)∈Si

cu,t(S−i), 0

 , (4)

where ρSi,S−i
is the penalty that user u has to pay in order to

satisfy its user traffic demand Du. It is clear that each player
chooses her single-step best response in order to minimize
fi(Si, S−i). Due to the saturation action profile, if player i
presents at step k−1 a zero penalty, all users’ traffic demands
Du, ∀u ∈ Ui, are satisfied with the current player’s action
S
(k−1)
i . Noticing that the cost function is not decreasing with

users’ action cardinality, in the case of saturation with zero
penalty, the only relevant term in the cost function is the
cardinality of the current action |Si| (i.e., the number of TTIs
used for scheduling the users). Hence, at next step k, player
i will choose a action S(k)

i such that |S(k)
i |≤ |S

(k−1)
i | due to

the single-step best response, which leads to

f(S
(k)
i , S−i) ≤ f(S

(k−1)
i , S−i), (5)

where f(·) is the cost function defined in (4). Given that
the player change S

(k−1)
i will not increase the inter-cell

interference towards the other cells, it may benefit the other
players choices. Hence, the penalty value in the cost function
will not ever be increased by the other players, and the updated
action profile σ(k) is still a saturation action profile at step k.
Therefore, we deduce that the inequality (5) will be satisfied
for all players’ actions in the system, at any step k.

Since we assume a non-decreasing cost function, each
player will get the minimum of the cost function in a finite
number of steps. Upon all players choose the particular action
returning the minimum of the cost function, they have reached
a Nash equilibrium. Furthermore, if players’ actions take all
available W TTIs with a non-zero penalty, the players have
already reached a Nash equilibrium. Since they cannot further
increase the number of involved TTIs, no further action will
improve their cost function.

Inhomogeneous traffic demands. We evaluate our proposal
under inhomogeneous traffic demands conditions. In particular,
we set up our simulations campaign considering different user
traffic demands (GBR) per cell, i.e., user demand equal to 2
Mbps for BSs 1 and 2, 2.5 Mbps for BSs 3 and 4, 3 Mbps
for BSs 5 and 6, 3.5 Mbps for users belonging to BS 7.

In Fig. 10 we show the time-utilization index increasing the
user density per base station. It is worth mentioning that a very
similar behavior is depicted if compared to the homogeneous
case (Figs. 3 and 4) exhibiting a consistent gain for DMS
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over different scenarios and number of users. The results are
very close to the theoretical lower bound as soon as a few
tens of users are considered. We can finally claim that the
homogeneity assumption taken throughout the paper does not
impair the final obtained results.
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Fig. 10: Time-utilization index over different network density values for 2
Mbps (BSs 1 and 2), 2.5 Mbps (BSs 3 and 4), 3 Mbps (BSs 5 and 6) and
3.5 Mbps (BS 7) per GBR users and 7 base stations deployment.


