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Abstract—Mass events represent one of the most challenging
scenarios for mobile networks because, although their date and
time are usually known in advance, the actual demand for
resources is difficult to predict due to its dependency on many
different factors. Based on data provided by a major European
carrier during mass events in a football stadium comprising up
to 30.000 people, 16 base station sectors and 1 Km2 area, we
performed a data-driven analysis of the radio access network
infrastructure dynamics during such events.

Given the insights obtained from the analysis, we developed
ARENA, a model-free deep learning Radio Access Network
(RAN) capacity forecasting solution that, taking as input past
network monitoring data and events context information, pro-
vides guidance to mobile operators on the expected RAN capacity
needed during a future event. Our results, validated against real
events contained in the dataset, illustrate the effectiveness of our
proposed solution.

Index Terms—Cellular network, Machine Learning, Network
monitoring and measurements, Pro-active management.

I. INTRODUCTION

Mass events such as sport events (e.g., football games),
religious events (e.g., holy pilgrimages), political events (e.g.,
demonstrations) or entertainment events (e.g., concerts) are
particularly challenging for mobile operators despite being
planned with months or weeks ahead in most cases [1]. Indeed,
operators know when a demand surge spawning from such
events is coming but they are unable to adapt timely and
appropriately [2].

Traditional delay tolerant [3] and information centric [4]
approaches offer methods to smooth the traffic volumes during
congestion time, e.g., postponing the transmission of delay
tolerant traffic outside the busy time windows, or reducing the
traffic flowing in the network by a proactive content placement
at the edge of the network. However, due to generally scarce
radio access resource availability, none of those approaches
would avoid mobile traffic congestion in the event premises.
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To increase the spectrum availability, current approaches imply
the on-demand deployment of, e.g., nomadic cells such as
Cells on Wheels (CoWs) or Cells on Light Trucks (CoLTs),
or fixed small (micro, pico, femto) cells for surge offloading.
All these options are rather rudimentary and, needless to
say, overly costly. Network slicing [5], which will allow an
operator to request further slices of dormant resources (even
from other operators) in a more flexible manner, can certainly
reduce the cost tied to the hunt for capacity during these
events. However, albeit planned ahead in time, the amount of
additional resources required to cope with the demand during
these situations is largely unpredictable.

Indeed, the amount of network load resulting from these
events depends on contextual features such as the type of
event—different events foster different mobile applications,
such as real-time video streaming during concerts; and con-
sumption patterns, such as data avalanches occurring during
the breaks of a football match—or the ability of the event to
attract attendance, such as the ranking of the matching teams
in a football competition. However, although this contextual
information is available, the model capturing the relationship
between mobile traffic demand and the specific context of a
given event is inherently hard to build because mass events
are rare and each is different in nature from one another.

In this paper, we advocate for the use of model-free deep
learning techniques to take up on the challenge. Specifically,
we first analyze data obtained from a major operator regarding
the cellular coverage in the stadium of an important football
team in Greece. It is well understood nowadays that the use
of radio spectrum through mobile systems is closely related
to human activity [6]. In this way, our analysis not only
makes evident the aforementioned challenges, but it also sheds
light on the behavioral dynamics of sport fans when attending
major football events. Then, we formulate a Bandit Convex
Optimization (BCO) model to formalize the problem we are
addressing. Our model formalizes some of the aspects that
make capacity forecasting during mass events complex, that
is, the unknown relationship between user traffic patterns,
spectrum usage and the context around the event. Then, to
address this problem we design a deep neural network model
to estimate the amount of extra spectrum resources required
during the event to preserve the quality of service experienced
by end users during regular days.

To summarize, the main contributions are the following:
• We provide a quantitative and qualitative analysis of the

network statistics during football events taken from a real
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deployment;
• We formulate our problem by means of a Bandit Convex

Optimization (BCO) model;
• We evaluate the performance of different state-of-the-art

forecasting models while dealing with real-data;
• We propose a deep learning architecture, namely ARENA

that takes as input monitoring metrics from Radio Access
Network (RAN) devices as well as other contextual in-
formation to assess the extra spectrum resources required
during the event;

• We validate the model and finally quantify the expected
amount of resources to be proactively deployed in the
stadium area to meet the target Quality of Service (QoS).

The rest of the paper is structured as follows. Section II
collects the state-of-the-art and related works in the field.
Section III discusses the scenario considered in this work.
Section IV presents an overview of the dataset of network-
ing measurements and features therein contained, providing
insight on the public event dynamics from the mobile network
perspective, with focus on the quality of service experienced
by the end users. In Section V we model the network
dynamics in the stadium by means of bandit optimization
theory and propose in Section VI a machine-learning (ML)
solution, namely ARENA, to capture the relationship between
user activity and network utilization. Section VI-C evaluates
ARENA’s capabilities to forecast future network dynamics and
estimate the additional amount of radio resources to improve
the end-user QoS. Finally, Section VII concludes the paper.

Privacy issues: Our research activity does not violate
user’s privacy rights. The dataset contains only high-level
aggregated and anonymous information.

II. RELATED WORK

Mass events (sports, in particular) are gaining substantial
attention for analysis in the last few years [7]–[9]. This is cer-
tainly a projection of the underlying social attraction to novel
applications (and the business therein) that improve the expe-
rience for attendees and participants, e.g., virtual/augmented
reality (VR/AR) technologies, in the upcoming 5G reign.

An accurate characterization of mobile network channel
statistics is of paramount importance to assess the network
capacity boundaries. However, as highlighted in [10], stable
performances in mobile networks are much more complex to
be achieved due to highly variable wireless channel statistics
that affect the final service provisioning. The authors of [7]
present a detailed analysis of spectator behavior with the
goal of designing novel mobile applications for stadium-based
sporting events. In their work, they exploit Bluetooth and
GPS traces to derive information such as density, location and
even travel speeds of crowds of people attending the UEFA
world cup final that took place at the City of Manchester
Stadium in May 2008. This early study hints at the impor-
tance of capturing contextual information to manage mobile
services during mass events. A thorough analysis of mobile
network performance during the 2013 Superbowl is presented
in [8]. The authors conclude that the use of multicast cellular
coverage in combination with content caching is paramount

to solve the congestion of the uplink LTE channels during
super-sized events. The authors of [9] analytically investigate
the root causes of cellular network performance drops during
crowded events, identifying the random access procedure as
the main cause for QoE degradation and suggesting to leverage
on device-to-device communication to cluster network access
requests as to alleviate the problem. Similarly, [11] provides
an in-depth analysis of the subscribers’ quality of experience
focusing on roaming scenarios.

Mobile traffic forecasting has fostered substantial research
effort in its own merit. In [12]–[15] the authors explore mobile
traces collected from metropolitan areas to investigate and
understand human mobility. In [16], [17] the authors focus on
mobile resource utilization of individual services at a national
scale. This work sheds the lights on interesting macroscopic
properties and provides informative insights of todays’ mobile
networks, including spatio-temporal traffic patterns as well as
the relationship between data volumes and urbanization levels.
Moreover, several machine learning mobile traffic prediction
solutions have been proposed in the literature. In [18], the
authors use deep learning techniques for spatio-temporal mod-
eling and prediction in cellular networks. The authors of [5]
apply forecasting of mobile network resource utilization to
investigate the network slicing concept in 5G systems. They
design a dynamic resource allocation framework accounting
for all the network domains and validate their proposal through
exhaustive simulation campaigns. Deep models for long-term
traffic prediction are also provided in [13], [19], [20]. Of
particular interest from these works is how deep learning
models substantially outperform traditional predictive meth-
ods. Finally, [21] proposes an encoder-decoder neural-network
structure to forecast traffic demands on specific services (or
network slices) and solve the trade-off between capacity over-
dimensioning and service requirements guarantees. While this
work on traffic forecasting provides insightful understanding
on the dynamics of regular-user regular-day when interacting
with mobile services, the model capturing such behavior is not
valid during rare but massively crowded events.

In the sequel, we will first analyze the case of an important
football stadium in Greece and the mobile coverage provided
by a major mobile operator during a regular football season.
A key observation of our analysis is that the relationship
between active users and radio resources during sport events
substantially differ from that of a regular day and so it requires
special consideration to that given in [5], [16]–[18], [21].

III. PRELIMINARY CONSIDERATIONS

Despite frustrating, the poor network performance achieved
in crowded initiatives like concerts or sport matches is com-
monly accepted by public and professionals attending such
events who, after several initial unsuccessful trials, often
postpone the upload (or download) of their photos and videos
on social media due to network congestion. Similar poor
conditions are mostly registered during an event in case of
voice calls with a clear dropping rate increase [22]. The
problem is well known and accounts for two separate root
causes deriving from the need of widely guaranteeing access
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Fig. 1: Overview of the stadium area.

to the network, i.e., congestion in the radio access network
(RAN) during the random access procedure (uplink traffic)
and limited resource availability against a huge data demand
surge (downlink traffic).

A. Standardization procedures

During the initial access, the User Equipment (UE) scans
the system broadcast information to obtain the main system
configuration parameters and synchronize with the network
before attempting to attach through the physical random access
channel (PRACH). The LTE standard defines two random
access procedures: a contention-based and a contention-free.
The former is mainly used for initial access, Radio Resource
Control (RRC) layer connection (re-)establishment and for up-
link data transmission in non-synchronized states or in absence
of scheduled resource availability. The latter, less common, is
mostly implemented to allow fast handover procedures. The
RRC protocol of LTE system includes, among the others,
connection establishment and connection release, system in-
formation broadcast and radio bearer setup and reconfigura-
tion [23]. In LTE, the base stations or eNBs centralize most
of the RRC functionality as well as the resource management
and packet scheduling. The set of activities performed by the
eNB varies according to the state of the radio connection—
which can be either active (Connected) or not active (Idle)—
between the UE and the network. In the RRCIDLE state, the
UE passively monitors the system information broadcast by
the network without the need to send monitoring reports or
mobility updates. Conversely, UEs move into RRCCONNECTED
state when performing a call or transmitting data, which
increase the monitoring information reports sent to the radio
access node in order to keep the session active. During the
contention-based procedure, the UE randomly selects one of
the 64 − #cf orthogonal preamble signatures and the next
available subframe for PRACH transmission, where #cf is the
number of preamble signatures allocated for the contention-
free procedure (its value can change according to traffic load
in the system). After sending the attachment request, the UE
monitors the physical downlink control channel (PDCCH) and

schedules a timer. In case of simultaneous RACH requests, the
eNB uses the preamble sequence to differentiate among users.
However, specially in crowded areas, different requests may
collide. In this case, the eNB will not be able to decode the
requests thereby triggering an exponential backoff procedure
in the UE which delays the next access attempt. If no other
user selects the same preamble sequence, the eNB is able
to decode the request and reply with a Random Access
Response (RAR) message through the PDCCH. At this point,
the UE sends a RRC connection request message including a
temporary identifier and the establishment cause. If accepted
by the network, the access procedure terminates, and the UE
moves into RRCCONNECTED state so that it is allowed to use the
data communication services of the system.

Several optimization steps can be adopted to increase the
performance of the RACH procedure. Typical deployments
assume collision probability between UEs in the order of
1% with periodic random access occasions distributed every
10 ms. This setup translates into the possibility to handle
an offered load of 128 attempts/second over 10MHz band-
width [24]. Clearly, such a setup leads to low performance
when dealing with crowded events. Typical approaches to
solve this situation involve the reduction of the access occasion
cycle duration and the increase of access opportunities within
one frame, however this negatively impacts on the PRACH
overhead finally reducing the scheduling opportunities for user
data transmissions.

B. Technical challenge
The second issue, data demand surges, is more intuitive and

involves reduced rate of transmission opportunities (delay) and
small chunks of resources scheduled per user within the Physi-
cal Downlink Shared Channel (PDSCH) (low throughput) due
to a high number of users in RRCCONNECTED state.

Our work focuses on the latter issue. A simple approach
to solve it is to smooth down traffic patterns by delaying
load opportunistically to time instances with a less-congested
network [3], [8]. However, this approach is only acceptable for
delay-tolerant applications and hardly fits with the real-time
nature of most use cases motivating 5G applications. The only
solution upon such context is to increase the capacity of the
system by deploying nomadic cells such as Cells on Wheels
(CoWs) or Cells on Light Trucks (CoLTs), or offload traffic
to fixed small cells, which effectively increases the capillarity
of the network and hence the density of radio access points.

Unfortunately, this approach is overly expensive and slow,
incapable of adapting to different traffic patterns occurring
during events of different nature or events with different
number of attendees. Certainly, network slicing opens the
door for novel ways of increasing the capacity to the network
opportunistically in a more agile manner (e.g., leasing addi-
tional spectrum through a network slice from neighbouring
operators)—in the matter of few hours or even minutes.
Still, the human relationship with mobile applications and the
number of attendees substantially differ from one event to
another. Summing up the fact that such massive events are rare
(though planned), makes forecasting capacity requirements
particularly daunting.
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Fig. 2: Temporal evolution of the aggregated downlink (DL)
and uplink (UL) traffic volume in the stadium area during a
regular day (dashed line) and during the day of a large event
(straight line).

IV. DATA ANALYSIS

In this section we present a data-driven analysis of sport
events. Our dataset consists of weeks of monitoring data
including large sport events taken place in a football sta-
dium during a regular season under the coverage of 6 LTE
eNBs, subdivided into 16 sectors, from a major operator in
Greece. The set of eNBs covers an area of approximately
1 Km2. Such concentration of radio access points is required
to accommodate the traffic peaks generated by the almost
30000 people hosted in the stadium during sport events.
For the same reason, the base stations are equipped with
directive arrays of antennas and support Carrier Aggregation
(CA). As shown in Fig. 1, the surrounding district includes
both residential neighbourhoods and vehicular streets, which
highly characterize the spatio-temporal behaviour of the traces
as later detailed in Section IV-B. We do not disclose the
location of the eNBs due to privacy matters. Our goal is
to characterize the relationship between active users during
the events and network usage in contrast to regular days.
Therefore, we focus our analysis on the average throughput
per active user experienced by the event attendees in the
stadium. Throughout the rest of the paper, we will consider it
as the key performance indicator (KPI) of the perceived quality
of service (QoS) experienced by the end-users. To ease our
analysis, we focus on a particular sport match, taken place
in February 10Cℎ , 2019, which gathered 25097 attendees in

the stadium as stated by official notes from the organizers.1

The data collection exploits local information registered by the
LTE eNBs for monitoring purposes, and include both averaged
and aggregated features with a time granularity of 15 minutes.
This ensures that the subscribers’ privacy rights are preserved.

A. Traffic Volume Patterns

Fig. 2 shows the aggregated traffic volume generated within
a 24-hour time period of a regular weekday (dashed line) and
also during the day of the event (straight line), discerning
between uplink (UL) and downlink (DL) traffic with red and
blue lines, respectively. The event is scheduled to start at
19.30h and finish at 21.15h. We first observe that both UL
and DL patterns are remarkably similar between a regular day
and the day of the event up until 3 hours before the beginning
of the event and the anomaly data usage persists until around 2
hours after the end of the event. This clearly reflects common
human behavior as attendees usually gather in the surroundings
of the stadium for social interactions before and after the event.
This is evidenced by two volume peaks at around 18h and at
around 21.30h. The former gradually vanishes until the event
begins, coinciding with crowds moving towards the allotted
seats in the stadium, whereas the latter peaks practically
immediately after the end of the event and gradually vanishing
as crowds move out of the stadium. Interestingly, there is a
third peak, concomitant with the break of the event, with two
drops in volume during the two halves of the event, which is
expected as users are focusing on the game itself. We would
like to remark that this pattern repeats across all events of the
season with a gain factor dependent on the number of attendees
and represents a signature of football games. Different events
will leave different footprints and motivate the use of model-
free approaches to forecast capacity requirements.

Fig. 3 compares the same distributions of traffic volume
across different time periods, namely, morning (6-12h), af-
ternoon (12-18h), evening (18-24h) and night (24-6h), as a
function of the number of active users (RRCCONNECTED) for both
downlink and uplink in a regular weekday (first and second
plots) and for the day of the event (third and fourth plots).
As expected, the volume distribution during the day of the
event is skewed with a long tail concentrating large number

1While our analysis is based on a single event, we have exhaustively eval-
uated other 10 different matches finding no relevant performance differences,
which makes our approach generalizable.

Fig. 3: Normalized data volume distribution as a function of the number of active users (RRCCONNECTED) for downlink (DL)
and uplink (UL) and different periods of the day (morning, afternoon, evening, night).
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Fig. 4: Evolution of users activity. Peak and average number of
active users (RRCCONNECTED) (outer plot) and peak-to-average
ratio (inner plot) during the day of the event and during a
regular day.

of users during the afternoon and the evening, precisely the
new connections from the event attendees. This allows us to
characterize the background traffic volume, generated by less
than 250 active connections spawning less than 50% of the
total system capacity following a strongly linear relationship.
Such linearity is broken during the event for downlink traffic.
The average data volume by active users within this regime
(above 250 users) is lower than in normal conditions, which
suggests poor quality of service experienced by the end users
in the stadium.

B. Temporal Distribution of Mobile Users

Fig. 4 compares the activity of active users (RRCCONNECTED)
in the neighbourhood of the stadium during the day of the
event (blue lines) with that of a regular weekday (dark lines),
aggregated over all the eNBs in the area. The figure shows
the average number of users within each 15-minute time
window (dashed lines) and the maximum number of active
users within the same window (straight lines). As expected,
the number of active connection peaks are highly correlated
to the traffic volume time evolution shown in Fig. 2, with the
number of concurrent connections ranging up to 600 active UEs

minute ,
over 10 times higher than those during a regular day. The
areas highlighted in light blue between straight and dashed
lines provide an indication of the variability of the number of
active UEs, i.e., the peak-to-average active connections, and

Fig. 6: Evolution of the average downlink (DL) capacity per
user (our QoS metric) during the day of the event (outer plot)
and a regular day (inner plot). Highlight areas indicate the two
periods of time when the sport event is occurring.

evidence a substantial increase in volatility (around 2 times
higher peak-to-average connections) during the course of the
event. To visualize this, we create an inner plot depicting
the peak-to-average ratio in both scenarios (event and regular
day). Higher volatility in user activity is observed during the
night and early in the morning, which is explained by the low
number of net active connections (small variations yield higher
peak-to-average ratios). Interestingly, however, the average-to-
peak ratio increases during the event, which implies that the
operator must deal with substantial control plane volatility in
addition to data volume surges. It is clear that as soon as the
base station reaches the saturation point, the perceived QoE
decreases due to limited scheduling of resources. We further
investigate this point in the following subsections.

C. Service Degradation

As mentioned above, we conjecture that the skewness of
the volume distribution shown in Fig. 3 is due to poor quality
of service. To confirm this hypothesis, we take a closer look
to the physical spectrum usage, namely the downlink physical
resource block (PRB) utilization measured at the eNBs. In this
way, Fig. 5 compares the relative PRB utilization as a function
of the number of active users during the event (first and third
plot) and that of a regular day (second and fourth plot) for
the different frequency bands used by the sectors of the eNBs
(first two plots) and for different periods of time during the day

Fig. 5: Downlink PRB utilization as a function of the number of active users during the day of the event and during a regular
day across three frequency bands managed by the eNB and different time periods (morning, afternoon, evening, night).
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(a) Overview of different metrics collected by two eNBs in the stadium
area during an event day and weekday (Normalized values).
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(b) Correlation matrix for different traces collected by a highly
loaded eNB during a weekday (left) and the event (right).
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(c) Correlation matrix for different traces collected by a lightly
loaded eNB during a weekday (left) and the event (right).

Fig. 7: Temporal correlation of features in different working conditions.

(second two plots). We note that the 1800-MHz band saturates
when the number of users grows over 250, which unavoidably
translates into QoS degradation for the end users. The time
analysis confirms that this event occurs during the time period
of the football match.

This is further confirmed in Fig. 6, which compares the
average throughput capacity per user over time during the day
of the event (outer plot) against a regular weekday (inner plot),
considering each of the three bands selected for our study. As
expected, individual QoS substantially deteriorates during the
sport event, particularly during a 2.5-hour time window before
the beginning of the event, during the break of the event and
during a 1.5-hour time window after the end of the event. With
respect to standard working conditions, the average throughput
capacity per user decreases up to 50 times.

D. Inter-Feature Time Correlation

We now study how different features relate to each other
and across different neighbouring eNBs from a statistical per-
spective. To ease the presentation, we focus on two eNBs: an
eNB that carries significant traffic volumes during both week
and event days, labelled as ”High Load eNB” and represented
with a blue color palette in Fig. 7; and an eNB that serves less
significant amount of traffic, labelled as ”Low Load eNB” and
represented with a red color palette. Specifically, Fig. 7a shows
the temporal dynamics of different features collected by the
two eNBs during a regular weekday (dashed lines) and during
a match game (shaded area), while Figs. 7b and 7c depicts
their correlation matrix. From Fig. 7a, it clearly appears the
performance gap with standard operating conditions. Specially
for the UL case, during the event both the ”High Load”

and ”Low Load” eNBs present traffic peaks 10 times higher
than the traffic volumes achieved in normal conditions. Such
UL activity peak can be justified by a sudden increase of
social media activity and background cloud synchronization
processes [8].

Let us first focus on the left matrices of Figs. 7b and
7c. As expected, since both the eNBs are deployed in the
same area and the human activity corresponds to that of a
regular weekday, the correlation value (Pearson’s r coefficient)
between each pair of features is positive and similar in both
eNBs. This is true for every couple of features except the pair
”DL PRBs-DL Volume”, which appears strongly correlated for
the highly loaded eNB and only moderately correlated for the
lightly loaded eNB. It should be noticed that the latter exhibits
a rather flat behavior during normal working conditions. More
interesting are the correlation matrices we observe during the
match, depicted by the two right-most plots of Figs. 7b and 7c.
First, the lightly loaded eNB shows higher correlation values
with respect to normal working conditions due to a more
dynamic pattern enforced by the attendees in the area. Second
and more surprisingly, we observe that most of the correlations
available during a weekday in the highly loaded eNB vanish
during the match, eventually providing negative value for
the couple ”Active UEs-DL Volume”. The latter represents
a counter-intuitive behaviour explainable by the fact that the
considered eNB saturates its physical resources (PRBs) during
most part of the game distorting the underlying relationship
between the features. Together, these observations provide
valuable insights not only on the fact that in normal working
conditions features such as Active UEs and DL Volume
are correlated (which is somewhat expected), but also that
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during mass events distortions may occur. This motivates us
to design a mechanism that exploits not only the information
contained within each time series feature, but also the time-
domain correlation that heterogeneous sequences might show
among themselves. Moreover, as each eNB exhibits different
behaviour, we advocate to model each cell individually taking
into account both regular and crowded situations.

V. MODEL DESIGN

In our data analysis, we showed that current network
deployments may be insufficient during football events as
the unexpected-high density of users can quickly saturate the
available network resources. However, providing additional
spectrum via increasing the density of radio access points
is overly expensive, even with future network slicing mech-
anisms. Hence, proper mechanisms to accurately account for
the required additional resources so that certain QoS targets
are satisfied must be in place. Hereafter, we model the problem
of network configuration during football events and suggest a
new network setting to be dynamically applied by the operator.

A. Notation

We use conventional notation. We let R and Z denote the
set of real and integer numbers. We use R+, R=, and R<×= to
represent the sets of non-negative real numbers, =-dimensional
real vectors, and < × = real matrices, respectively. Vectors
are in column form and written in bold font. Matrices are in
upper-case font. Subscripts represent an element in a vector
and superscripts elements in a sequence. For instance, 〈x(C)〉
is a sequence of vectors with x(C) = (G (C)1 , . . . , G

(C)
= )) being

a vector from R=. In turn, G (C)
8

is the 8’th component of the
C’th vector in the sequence, where superscript ) represents the
transpose operator. ‖ ⃗⃗G ‖2 represents the 2-norm or Euclidean
norm of

⃗⃗
G and ‖ ⃗⃗G‖∞ its maximum norm (max8 |G8 |). Finally,

[·]+ denotes the projection of a vector onto the non-negative
orthant, i.e., [ ⃗⃗G]+ = (max{0, G1}, . . . , max{0, G=}) , G ∈ R=.

B. Problem definition

Let us denote the set of base stations in the considered
area as 1 ∈ B, where � = |B| is the total amount of base
station sectors. Without loss of generality, we consider each
sector as an independent base station as each sector shows
heterogeneous behaviour and each of them cover a different
subset of the users in the area. We assume that time is split
into different epochs 4 ∈ � with duration ) . Let A4D denote the
amount of traffic served for user D ∈ U4

1
during epoch 4 (bits),

where *4
1
= |Ub4 | is the average number of users under the

coverage area of base station 1 connected concurrently within
epoch 4. Each base station 1 is provided with a spectrum
capacity 24

1
(number of PRBs), which can be dynamically

changed (every epoch 4) based on the carrier aggregation
policies of the telco operator. Note that in case of seriously-
congested events, the operator may even decide to augment the
overall spectrum capacity by placing portable base stations
(e.g., Cells on Wheels or Cells on Light Trucks) or leasing
or sharing a portion of the available bandwidth from other

operators via, e.g., network slicing [25]. We now characterize
the satisfaction of individual user connections by formally
introducing the QoS metric used in Fig. 6 as the following
expression:

@41 =

∑
D∈U4

1
A4D∑

D∈U4
1
g4D
, ∀1 ∈ B. (1)

where A4D represents the volume of traffic per user under
the base station coverage served within the epoch 4, and g4D
the effective downlink time per user, which accounts for the
time when the first part of the PDCP SDU of the downlink
buffer was transmitted until the buffer is emptied. It should be
noticed that in presence of congestion and fair scheduling of
resources, the average active time per user increases as a result
of resource contention, thus leading to lower QoS. However,
g4D depends on the spectrum capacity covering the event and on
the contextual data around the event (type of event, expected
number of attendees) and the model capturing the behavior of
g4D is not known a priori and so is @4

1
’s.

Objective. The target is to find the best PRB allocation
on different deployed base stations such that the overall
cost of such additional spectrum is minimized such that the
aggregated QoS measured from all considered base stations is
above a certain pre-defined threshold Γ. Of course, our focus
is on the amount of spectrum required during mass events,
which will typically exceed the capacity of the system and
depends on the context of the event itself.

Constraints. We consider two sets of constraints. First, we
need to impose that traffic queues are stable, that is, they do not
grow infinitely over time, which would lead to dramatic drops
in latency performance. We do not impose an instantaneous
serving rate greater than the arrival rate; instead we consider
that the long-term base station serving rate must be greater or
equal to the long-term data arrival rate. Formally, this can be
expressed by∑

4∈E

∑
D∈U4

1

(
A4D − Z4D (241)

)
≤ 0, ∀1 ∈ B. (2)

where Z4D is the average throughput over epoch 4 for user D.
Second, we shall impose certain threshold on individual QoS
performance, which in turn can be succinctly described by∑

4∈E

(
Γ41 − @

4
1 (2

4
1)

)
≤ 0, ∀1 ∈ B (3)

where −@4
1
(·) is the QoS of base station 1 during epoch 4.

While both functions @4
1
(·) and Z4D (·) are not known, we can

get estimates at the end of each epoch 4.
Convex functions and decision variables. Telco operators

may apply different base station settings, i.e., the number of
available spectrum resources (PRBs), and decide to increase
the total number of available spectrum in order to tune users’
performance. We assume that the functions capturing through-
put and QoS performance are both convex with respect to the
amount of spectrum or number of selected PRBs (the larger the
spectrum, the higher the user throughput, the better the QoS).
Note that a trivial solution to satisfy all user requirements,
i.e., to keep the QoS at reasonable levels, is to provide
an infinitely large amount of spectrum. However, deploying
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additional spectrum (e.g. via CoWs or network slicing) incurs
in a cost X4 for the operator that we shall minimize.

C. Bandit convex optimization

With the above information, we can mathematically formu-
late the following optimization problem

min⃗⃗⃗
2∈N�×�

∑
4∈E

∑
1∈B

X4 (241) (4)

s.t.
∑
4∈E

∑
D∈U4

1

(
A4D − Z4D (241)

)
≤ 0, ∀1 ∈ B;∑

4∈E

(
Γ41 − @

4
1 (2

4
1)

)
≤ 0, ∀1 ∈ B;

241 ∈ R
+, ∀1 ∈ B, 4 ∈ E;

where Z4D , @4
1

and X4 depend on the amount of spectrum
(PRBs) 24

1
allotted to base station 1 during epoch 4. We

assume the following cost function

X4 (241) =
{

0, if 241 ≤ 1,
U (241)

V , if 241 > 1;
(5)

so X(24
1
) captures the fact that base stations might be assigned

with PRBs already available within the bandwidth provisioned
to the (24

1
≤ 1) and so it does not incur in extra cost,

or additional spectrum is required (24
1
> 1) with a cost

parametrized by U and V.
Recalling the online convex optimization theory [26] and

considering an invariant feasible set C = (24
1
), we can rewrite

the above optimization problem with its online Lagrangian
version as follows

L4 (
⃗⃗
2 4,
⃗⃗⃗
_) := X4 ( ⃗⃗G) +

⃗⃗⃗
_ )
⃗⃗⃗
6 4 ( ⃗⃗G), (6)

where
⃗⃗
2 4 = (24

1
) is the set of selectable PBRs during epoch

4 and
⃗⃗⃗
6 4 ( ⃗⃗2 4) = ∑

4∈E

( ⃗⃗⃗
Γ 4 − ⃗⃗@⃗ 4 ( ⃗⃗2 4) + ⃗⃗A 4 −

⃗⃗⃗
Z 4 ( ⃗⃗2 4)

)
. We can

then write the recursive
⃗⃗
2 4+1 given the prime iteration

⃗⃗
2 4 as

the following

⃗⃗
2 4+1 = arg min⃗⃗

G⃗∈C
∇)⃗⃗⃗G L

4 ( ⃗⃗2 4,
⃗⃗⃗
_ 4) ( ⃗⃗G − ⃗⃗2 4) + 1

2f
| | ⃗⃗G − ⃗⃗2 4 | |2, (7)

where f is a predefined constant and ∇)⃗⃗⃗
G
L4 ( ⃗⃗2 4,

⃗⃗⃗
_ 4) =

∇X4 ( ⃗⃗2 4 + ∇ ⃗⃗⃗6 4 ( ⃗⃗2 4)
⃗⃗⃗
_ ) . This admits the following solution:

⃗⃗
2 4+1 = PC

( ⃗⃗
2 4 − f∇ ⃗⃗G⃗L4 (

⃗⃗
2 4,
⃗⃗⃗
_ 4)

)
, (8)

where the projector operator is PC (
⃗⃗
H) = arg min⃗⃗⃗

2∈C
| | ⃗⃗2 − ⃗⃗H | |2,

and the dual update as the following
⃗⃗⃗
_ 4+1=

[ ⃗⃗⃗
_ 4+`

( ⃗⃗⃗
6 4 ( ⃗⃗2 4) + ∇) ⃗⃗⃗6 4 ( ⃗⃗2)4) ( ⃗⃗2 (4+1)− ⃗⃗2 4)

)]+
, (9)

where ` > 0 ∈ R+ is a step size.
Given that functions Z (·) and @(·) are not known, we need to

construct a stochastic gradient estimate of unknown functions
using the limited value information [27]. In particular, we can
evaluate the function at a perturbated point

⃗⃗
G +n ⃗⃗⃗D yielding

that ∇ 5 ( ⃗⃗G) ≈ � [∇̂1 5 ( ⃗⃗G)], where ∇̂1 5 ( ⃗⃗G) = 3
n
5 ( ⃗⃗G +n ⃗⃗⃗D) ⃗⃗⃗D is

the one-point gradient [28]. Therefore, we need to recall the
bandit online optimization theory to rewrite Eq. (8) as follows

ˆ⃗⃗24+1 = P(1−n )C
(
ˆ⃗⃗24 − f∇̂1⃗⃗⃗

2L
4 ( ⃗⃗2 4,

⃗⃗⃗
_ 4)

)
, (10)

where the projector operation is performed within a subset of
C to ensure feasibility of the perturbed ˆ⃗⃗24. We can then write
the dual update operation (Eq. (9)) as the following
⃗⃗⃗
_ 4+1=

[ ⃗⃗⃗
_ 4+`

( ⃗⃗⃗
6 4 ( ˆ⃗⃗24) + ∇) ⃗⃗⃗6 4 ( ˆ⃗⃗24)) ( ˆ⃗⃗2 (4+1)− ˆ⃗⃗24)

)]+
, (11)

where ˆ⃗⃗24 is the learning iterate.
The above considerations suggest that the model may fail

while trying to approximate functions Z (·) and @(·). In ad-
dition, we need the exact characterization of the mobility
patterns influencing the number of connected user under each
base station U4

1
, for each time epoch 4 and base station

1, as well as the expected traffic demand A4D . Unfortunately,
all these variables present a strong relationship with respect
to multiple real-world variables, making our objective hardly
achievable within a reasonable time window. Therefore, in the
next section, we propose a machine-learning-based approach
to automatically learn and approximate these functions, and
provide forecasts on the number of active users as well as
their traffic request patterns based on a data-driven approach.

VI. ARENA: DESIGN AND PERFORMANCE

Our solution design, ARENA, requires two different ML-
based models to estimate the number of active users and
their traffic patterns. On the one hand, an LSTM-based ap-
proach allows to predict repetitive time patterns. On the other
hand, a Deep-Learning model allows to approximate complex
functions, e.g., those related to human mobility and cellular
traffic loads. Thus, we first focus on inferring the number
of active users in the stadium area, and then we exploit
this information to estimate the additional resource utilization
necessary to guarantee normal-condition QoE. Finally, we
show the performance of ARENA applied to real traffic data.

A. Active users

Spatio-temporal characteristics of mobile traces unveil pat-
terns that might be exploited to perform a forecasting process.
In this context, Long Short-Term Memory Recurrent Neural
Networks (LSTM-RNNs) [29] have attracted attention given
their capacity to capture repetitive schemes within unstructured
time series. An LSTM network is composed by a chain
of units, which sequentially apply a linear combination of
operations on the input data. Such a structure is fundamental
to provide the network with the capability to remember useful
information gathered from the past data samples and learn
long-term trends in the input sequence making LSTM well-
suited to handle mobile data traffic with significant spatio-
temporal correlations [16]. LSTMs can be represented as a
chain of � units, where each LSTM unit 9 ∈ J consists of
4 main elements, a memory cell and three gates, namely the
input � 9 , the output $ 9 and the forget gate �9 . The input
and output gates are responsible to insert and read back the
data into/from the memory cell itself, while the forget gate
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(a) CNN-LSTM architecture. (b) ConvLSTM architecture.

Fig. 8: Comparison of different LSTM-based architectures.

determines how much details should be kept or removed from
the unit at each iterative step. The information stored within
each unit 9 ∈ J is commonly referred as “state” of the unit, or
� 9 . To build more complex models, LSTM units are usually
stacked and concatenated into consecutive layers, where the
output of one layer feeds the input of the subsequent one, and
the hidden state ℎ 9 of each unit holds the information about
previously observed data. During the training phase, the input
and the previous hidden state are combined to form a vector,
which holds current and past information. Then, the vector
passes through several activation functions, namely sigmoid
and hyperbolic tangent functions depicted as f and C0=ℎ in
Fig. 8b, which help regularizing the outcome of the linear
combinations, finally adapting weight , and bias 1 values of
each gate. Although the LSTM model has proven powerful in
handling temporal correlation, existing work in the literature
suggests the use of LSTMs together with Convolutional Neural
Network (CNNs) in order to increase the accuracy of the
learning models [19]. The key-idea is to exploit not only the
information contained within each time series, but also the
time-domain correlation heterogeneous sequences might show
among themselves, as discussed in Section IV-D. For this
purpose, we consider two well-known architectures, namely
CNN-LSTM [30] and ConvLSTM [31], and compare their
capabilities in predicting the number of RRCCONNECTED devices
against the legacy LSTM model within a week time span.

As depicted in Fig. 8, the main difference about the two
models is that ConvLSTM embeds the convolution steps
into the LSTM unit, while CNN-LSTM models imply the
concatenation of the two types of networks sequentially2. Both
approaches therefore require the input data (and the output of
the internal transfer functions) to be shaped as tensors to take
advantage of the 2D representations of the network activities
and include spatio-temporal information to learn valuable
patterns within the dataset. The overall dataset has been split
according to a 60/40 ratio for the purposes of training and
validation, respectively. We train the models exploiting a
moving window of 6 days as input data and inferring on the
consecutive one, over a time span of several weeks. Within
our experimental setup, we considered several hyperparameter

2We refer the reader to state-of-the-art literature such as [30] and [31]
for further implementation details.

settings. In particular, we account for a variable number of
LSTM cells � = {200, 300, 400} and convolutional filters
Φ = {64, 128, 256} for each model architecture. The legacy
LSTM model is composed of two consecutive layers of � units
and a final fully-connected layer that provides the resulting
output. The CNN-LSTM model accounts for two convolutional
layers characterized by Φ filters each and a kernel size of
3 to learn spatial features, which are followed by an LSTM
layer of � units and a final fully-connected layer to learn the
correlation in time. With respect to legacy LSTM models, the
ConvLSTM architecture neglects the internal dense connection
among gates in favour of a convolution operation, thereby
reducing the number of model parameters and decreasing
the chances of over-fitting. We adopt the mean-squared error
(MSE) metric to train the models, and choose the Adam
optimizer to optimize the loss function [32]. For the sake of
comparison, we additionally include a baseline autoregressive
integrated moving average (ARIMA) model characterized by
parameters (?, 3, @), where ? is the order of the autoregressive
term, 3 is the number of differencing required to make the
time series stationary, and @ is the moving average order [33].
This model requires the input time series to be stationary.
Therefore, we applied simple differencing techniques to satisfy
this requirement. Additionally, we implemented a grid search
algorithm to optimize the ARIMA parameters choice, leading
to the following settings (?, 3, @) = (5, 1, 0). We resume
in Table I the resulting MSE and maximum absolute error
measured over the forecasted sequences, averaged over 4
weeks of testing data. As expected, due to the non-stationarity
of traffic traces (demonstrated by sudden peaks during the
most busy time periods) the ARIMA predictor provides weak
performances when dealing with the event time period, result-
ing in a maximum absolute error of 0.505. From our findings,
we can conclude that the CNN-LSTM model with �=200
and Φ=64 provides best performances in this scenario. Hence
hereafter, we will adopt this model as our active user predictor.

Fig. 9 provides a comparative view of the models ex-
ploiting a walk-forward validation. Using such settings, the
model is retrained as soon as new observations are made
available thus expanding the time window horizon in each
training step. Past predictions are then stored and evaluated
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Fig. 9: Comparison of different LSTM-based forecasting mod-
els working on real data from a base station in the stadium
area (Normalized values).

against a longer list of observations, leading to more accurate
forecasting performances. The different models exhibit good
performance in forecasting the number of active users during
normal working conditions thanks to the highly repetitive
patterns. However, as highlighted by the inner-plot of Fig. 9,
the prediction quality deteriorates during the event time period,
resulting in an underestimation of the activity peaks. Due to
its asymmetry with respect to standard working conditions,
it is clear that temporal information alone is not enough to
accurately predict the mobile traffic activity in the stadium
during public events. In the following, we thus propose a deep
learning model that in addition to spatio-temporal information
also exploits contextual information to enhance the accuracy
of the predictions.

B. Resource utilization

The relationship between QoS and availability of spectrum
resources, characterized by functions Z4D (241) and @4

1
(24
1
), is

unknown and hard to construct due to the rarity and partic-
ularity of mass events. We hence focus on model-free deep
learning methods to build our capacity forecasting mechanism.

To this aim, we design a neural network structure per base
station, each receiving two sets of inputs pertaining each
respective eNB: 8) a representation of contextual information
over the event (such as expected number of attendees, type of
the event, etc.), and 88) network-specific monitoring data over
time (historical time series), as depicted in Fig. 10. In order
to reduce the dimensionality of the contextual data yet extract
meaningful information we use a standard sparse autoencoder
(SAE) [34], [35, Ch.14]. In brief, a SAE consists of two feed-
forward neural networks: an encoder (with an output layer of
size 1 in our case) and a decoder (with an output layer of size

TABLE I: Error characterization over different settings and models.

J / Φ LSTM CNN-LSTM ConvLSTM ARIMA

MSE
64/200 0.0039 0.0032 0.0036

0.055128/300 0.0041 0.0035 0.0040
256/400 0.0045 0.0039 0.0037

MAX ABS
Error

64/200 0.321 0.339 0.322
0.505128/300 0.296 0.322 0.318

256/400 0.321 0.328 0.321

Fig. 10: Deep neural network architecture used in ARENA.

equal to the dimensions of the input of the encoder). They
are trained together so that the reconstructed output of the
decoder is as similar as possible to the input of the encoder.
During exploitation, we simply use the encoder part of our
SAE, which effectively compresses the contextual information
into a 1-dimensional value. For the purpose of this study,
we concentrate on the expected number of attendees to the
event as contextual data, and empirically select the CNN-
LSTM model as main forecasting module in light of the results
discussed in Sec. VI-A. On the other hand, the second set of
inputs concerns the historical traces of network measurements
introduced in Section IV. In particular, we select the time
evolution of average connected users *4

1
(for base station 1

during epoch 4), volume of downlink traffic as well as our QoS
metric @4

1
. Thus, we train a deep neural network for each base

station in the stadium area using 60% of the football events
in our dataset and validate the outcome using the remaining
40%.

Fig. 10 depicts the overall architecture of our system,
consisting in two neural networks connected in series. The first
neural network accounts for two layers of two-dimensional
Convolutional Neural Network (2D-CNN) with [ and ` filters
respectively. The CNN is a class of deep neural network
generally used in computer vision for their ability to detect
patterns in input images. The workflow assumes each filter
to be convolved along width and height of the input image
to produce an activation map. Different filters detect distinct
features so that a set of activation maps are passed to the
next layer of the CNN. We leverage on this and select from
the overall measurements matrix M the information related
to a specific base station 1, i.e., Mb. Then, we split Mb in
epochs, or snapshots B4

1
, generating smaller input matrices of

size (� × )), where � is the number of features and ) is
forecast horizon. We adopt a sliding window over time as
data augmentation technique. A normalization function N(·)
is applied at this point to favour the learning process.

The neurons of the 2D-CNN apply a filter H(∑4∈E Ie~K+
be) where Ie is the input matrix at epoch 4 (i.e., Ie = se

b), ~
indicates the 2D convolution operator, K is the filter kernel, b
is a bias vector and H(·) is a non linear activation function.
The significant development of deep learning methods lead to
the definition of plethora of different activation functions in
the literature [36]. We empirically select the Rectified Linear
Units (ReLu) function to overcome the vanishing gradient
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Fig. 11: Impact of different hyperparameter settings on
ARENA forecasting performances.

problem and allow the models to learn faster. In order to reduce
overfitting in favour of generalization, the inner layers of the
CNN are interleaved with a Dropout layer. At each training
stage, individual nodes and related incoming/outgoing edges
are either dropped (with probability ?) or kept (with proba-
bility 1 − ?). This step allows decreasing the co-dependency
from adjacent neurons during the training phase. The dropout
probability is fixed to 0.2. The output of our CNN consists
on a Flatten layer, so we map the input matrices into a fixed-
length vector that feeds the second stage of the architecture.

The second neural network consists in three feed-forward
layers. In this structure, also called Multi-Layer Perceptrons
(MLPs), the neurons of one layer are connected with all the
neurons of the adjacent layer to build a finite and acyclic graph.
The number of neurons in the first and second layer are fixed
to 128 and 64 respectively, while the size of the output layer
of the network matches with the number of samples to be
predicted ) for both output estimations: the active number of
users and the PRB utilization during the event. Importantly, the
MPLs inherit from standard multi-layer feed-forward networks
the capability to approximate continuous =-dimensional func-
tions 5 : R= → R= as stated by the universal approximation
theorem [37]. Thus, the output of each MPL layer is a linear
combination of weighted real-valued input and a nonlinear
activation function, namely H = q(wTx + b), where w denotes
the vector of weights, x is the vector of inputs, b is the bias
and q(·) is the non-linear activation function. Also in this case,
we adopt the ReLu function for the hidden layers and a linear
function for the output layer to retrieve the forecasting samples
amplitude. The output of the neural network includes a )-
dimensional vector predicting the amount of PRB utilization
¯⃗⃗21 during the ) epochs covering the event and a )-dimensional
vector with the respective prediction on the number of active
users *̄1 . The training phase exploits the adaptive moment
estimation (Adam) optimizer, with learning rate 10−4. At each
iteration, the model parameters are adjusted to minimize the
error between predictions and ground truth measured by means
of a loss function. In our model, we exploit the Mean Squared
Error (MSE) loss function [38].

The choice of the best hyperparameter settings for ARENA

has been performed by means of an accurate optimization
process aiming at reducing the forecasting error. In Fig.11 we
investigate the effects of a variable number of convolutional
filters [ and ` over the two convolutional layers included in
our proposed architecture. To deal with the highly hetero-
geneous traffic patterns, we have individually trained each
model exclusively accounting for the traffic traces coming
from the respective base station. The methodology to train
each model follows the one previously presented. The training
phase accounts for 50 epochs and runs over 60% of the overall
dataset, while the validation phase encompasses the remaining
40%. Our aim is to deal with mass events within the stadium
premises over the event days, therefore, in the upper plot
of Fig.11 we depict the maximum forecasting error expe-
rienced while estimating the resource consumption of each
base station. From the picture, we can notice that for some
base stations the resulting performances are poor, regardless
the configuration settings of our model. This outcome can
be easily explained as follows. Such considered base stations
are generally underutilized in regular days. This leads the
forecasting models to provide biased estimations of the cell
capacity utilization, even in case of significant traffic loads
generated during the sport events.

From the picture it can be noticed that an increase in
the convolutional layer size yields a general performance
degradation, both in terms of MSE and maximum forecasting
error. Adding more layers may help to extract more features,
but it also increases the number of parameters composing
the model that, in turn, augments the chances of overfitted
models. Empirically, we have identified the best performance
with [ = 64 and ` = 128 settings. Hence, we adopt these
values throughout our paper.

With the above neural network structure, our system learns
the relationship between active users and the incurred load.
Our goal however is to provide additional spectrum capacity
such that the same QoS experienced by the users during
regular days is preserved during the event. To this aim, we
let Δ4

1
=
*̄4
1

*̃1
denote a scaling factor, where *̄4

1
is the predicted

number of active users during epoch 4 for base station 1 (also
marked as the output of our neural network) and *̃1 is the
number of users required to saturate resources of base station
1 according to a radio usage behavior from a regular day—this
can be learned from previous history. The motivation behind is
to compensate the expected radio resource usage with respect
to the predicted impact that extra active users might have on
individual QoS during the event. As a result, we finally devise
the amount of spectrum required during the event as

⃗⃗
2 1 = ¯⃗⃗21 ·

⃗⃗ ⃗
Δ )1 , ∀1 ∈ B. (12)

C. Performance evaluation

Hereafter, we evaluate ARENA considering the real traf-
fic traces collected within the stadium neighbourhood. We
leverage the neural network capability to approximate the
relationship between QoE and PRB utilization as well as
the temporal correlation of the measurements (as described
in Section V) in order to measure the amount of additional
resources required to cope with the traffic demand during
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(a) Sector 1 (b) Sector 2 (c) Sector 3

(d) Sector 1 (e) Sector 2 (f) Sector 3

Fig. 12: Forecast of the number of active users or RRCCONNECTED (*1) during a mass event (blue line) and actual evolution
(dashed black line) for three sectors chosen for illustration purposes. Forecast on the radio resource usage (blue straight line),
actual usage evolution (dashed black line) and estimation of extra radio resource allocation (green line) for the same sectors.

football events. To this aim, we set the time horizon from
which our neural network starts making predictions to 2 hours
before a real event and then we assess the ability of ARENA
to predict the active number of users and spectrum usage
after such time horizon. Based on this information, ARENA
may take optimal spectrum allocation decisions. A complete
snapshot of our validation results is depicted in Fig. 12.
On the one hand, Figs. 12(a)-(c) (top three plots) show the
evolution over time of the active users for three different
sectors chosen for illustration purposes. The black dashed
line represents the actual data whereas the blue straight line
shows the predicted values. Like before, the area in light red
highlights the period of time when the event takes place. Note
that both lines overlap before the time horizon of the event
as they represent known information from the history. We
observe that our neural network structure follows the time
evolution of active users during the event remarkably well
thereby capturing the particularities of the football match as
we have discussed in our analysis in Section IV. On the other
hand, Figs. 12(d)-(f) (bottom three plots) show the evolution
over time of the downlink spectrum utilization for the same
sectors. Similarly, the dashed line represents the actual time
series whereas the straight blue line shows the predicted values
spawned by our neural network structure. In addition, we
show the recommended PRB allocation with a straight green
line (c.f. Eq. (12)), obtained varying the input QoS metric as
in standard operating conditions. As it can be observed, our
prediction on spectrum usage follows closely the real usage
until the radio access network capacity limit is reached. In such
cases, the recommended PRB allocation value (green line)
follows the dynamics of the active users keeping the amount of
time wherein extra capacity is required (PRB allocation above

100%) limited, thereby minimizing the incurred cost.

VII. CONCLUSIONS

In this paper we performed a data analysis of the network
dynamics during sport events in the neighbourhood of a
football stadium. The mobile infrastructure covers a 1-Km2

area with 16 base station sectors and is operated by a major
European carrier. The events contained traffic peaks generated
by about 30.000 people.

Based on the insights obtained, we took up on the mass
events RAN capacity forecasting challenge and designed
ARENA: a model-free deep learning solution that predicts
the expected number of connected users during a future event
along with the corresponding RAN spectrum capacity (PRB)
needed per sector for providing an average user experience.
ARENA takes as input the average number of connected
users, downlink traffic volume, downlink throughput and other
contextual event information to infer the future traffic loads.
Our results show that ARENA 8) closely predicts the actual
number of connected devices during mass events in time
and 88) that it can provide mobile operators guidance on the
actual RAN capacity needed during an event to provide a user
experience similar to a regular network situation.
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Xavier Costa-Pérez (M’06–SM’18) is Head of
Beyond 5G Networks R&D at NEC Laboratories
Europe, Scientific Director at the i2Cat R&D Center
and Research Professor at ICREA. His team con-
tributes to products roadmap evolution as well as to
European Commission R&D collaborative projects
and received several awards for successful technol-
ogy transfers. In addition, the team contributes to
related standardization bodies: 3GPP, ETSI NFV,
ETSI MEC and IETF. Xavier has been a 5GPPP
Technology Board member, served on the Program

Committee of several conferences (including IEEE Greencom, WCNC, and
INFOCOM), published at top research venues and holds several patents.
He also serves as Editor of IEEE Transactions on Mobile Computing and
Transactions on Communications journals. He received both his M.Sc. and
Ph.D. degrees in Telecommunications from the Polytechnic University of
Catalonia (UPC) in Barcelona and was the recipient of a national award for
his Ph.D. thesis.

Georgios Agapiou is Head of Core Research &
Network Testing at OTE S.A. and COSMOTE S.A.
in Athens. He has worked in several European
projects in the area of Mobile and optical Com-
munications, including various IST, STREP, e-ten,
Eurescom, FP6, FP7, ESA, H2020, and in more than
15 5G-PPP projects. He is author of more than 180
scientific publications in peer-reviewed journals and
conferences, as well as co-author of three technical
books. He has also been the Scientific Coordinator of
FITCE Greece Association. He received his Diploma

in Electrical Engineering from the University of Louisville, Kentucky, in 1985,
and the M.S. and Ph.D. degrees in Electrical Engineering from the Georgia
Institute of Technology, in 1987 and 1991, respectively. His main interest and
competence include testing of mobile wireless systems and the development
of simulation radio systems in the R&D facilities of OTE.

Hans Dieter Schotten received his Diploma and
Ph.D. degrees in electrical engineering from Aachen
University of Technology RWTH, Germany, in 1990
and 1997, respectively. Since August 2007, he is
a full professor and head of the Institute of Wire-
less Communication and Navigation at Technische
Universität Kaiserslautern. Since 2012, he is also
scientific director at the German Research Center
for Artificial Intelligence, heading the Intelligent
Networks department.


