
z-TORCH: An Automated NFV
Orchestration and Monitoring Solution

Vincenzo Sciancalepore, Member, IEEE, Faqir Zarrar Yousaf, Member, IEEE,
and Xavier Costa-Perez, Member, IEEE

Abstract—Autonomous management and orchestration
(MANO) of virtualized resources and services, especially in
large-scale Network Function Virtualization (NFV) environments,
is a big challenge owing to the stringent delay and performance
requirements expected of a variety of network services. The
Quality-of-Decisions (QoD) of a Management and Orchestration
(MANO) system depends on the quality and timeliness of the
information received from the underlying monitoring system.
The data generated by monitoring systems is a significant
contributor to the network and processing load of MANO
systems, impacting thus their performance. This raises a unique
challenge: how to jointly optimize the QoD of MANO systems
while at the same minimizing their monitoring loads at runtime?
This is the main focus of this paper.

In this context, we propose a novel automated NFV orchestra-
tion solution, namely z-TORCH (zero Touch Orchestration) that
jointly optimizes the orchestration and monitoring processes by
exploiting machine-learning-based techniques. The objective is
to enhance the QoD of MANO systems achieving a near-optimal
placement of Virtualized Network Functions (VNFs) at minimum
monitoring costs.

Index Terms—NFV, VNF, Orchestration, MANO, Monitoring,
Function placement.

I. INTRODUCTION

NETWORK Function Virtualization (NFV) is widely be-
ing considered as one of the key enabling technologies

for upcoming 5G networks. One of the main motivating
factors behind NFV is to provide a technology that will
enable the operators and service providers to provide and
manage resources and services in an efficient and agile manner
with reduced CAPital Expenditure (CAPEX) and OPerational
EXpenditure (OPEX), reduced new service roll-out time and
increased Return-On-Investment (ROI).

An NFV system consists of Virtualized Network Functions
(VNFs) that are deployed on servers, commonly referred to
as compute nodes, located inside the data-center. A Cloud
Management System (CMS) is an integral part of such an NFV
Infrastructure (NFVI) that is responsible for the Management
and Orchestration (MANO) of NFVI resources, such as com-
pute nodes, CPU, network, memory, storage, VNFs etc. For
effective MANO decisions, the CMS relies on the presence
of a reliable and robust monitoring system that monitors the
utilization of the NFVI resources and VNF Key-Performance
Indicators (KPIs) and keeps the CMS updated by the regular
provisioning of such information. The CMS regularly analyzes

V. Sciancalepore, F. Z. Yousaf and X. Costa-Perez are with NEC Laborato-
ries Europe GmbH, Heidelberg, Germany, E-mails: {vincenzo.sciancalepore,
zarrar.yousaf, xavier.costa}@neclab.eu.

vMME

vS/PGW

S1-C

S1-U

S11

HSS PCRF

S11

S6a

IP (SGi)

Gx/Gxc

S1-U
S/PGW-C

S/PGW-U

S/PGW-U

eNodeBs

MMP

MMP

SL
B

Fig. 1. Example of a vEPC VNF with its respective VNF Components.

the monitored data and derives appropriate Lifecycle Manage-
ment (LCM) decisions. According to a conservative estimate,
up to 25% of enterprise data today is from systems monitoring,
with almost 240 terabytes produced annually [1]. This is likely
to grow many folds with the wide deployment of NFV. The
challenge thus is to achieve optimum MANO decisions with
reduced monitoring load.

A. CMS operational mode
As part of the MANO operations, the CMS imparts relevant

LCM actions on the individual VNFs and its underlying
resources in order to ensure its operational and functional
integrity. LCM actions may include scaling-in,-out,-up,-down,
migration, update or upgrade, delete, ect., of individual VNFs
and its respective resources. Providing correct LCM decisions
is by itself a challenging problem owing to the variety of VNFs
that needs to be managed inside an NFVI. The complexity
of a VNF may also vary as advanced VNFs may embody
a complete system, for example a virtualized EPC (vEPC)
system that is formed of multiple VNF components (VNFC)
interlinked over standard and proprietary virtual links. The
example of such a complex VNF is illustrated in Fig. 1 [2].
The MANO complexity of a CMS further increases when
it manages Network Services (NS), i.e., designed chains of
relevant VNFs, e.g. firewalls, video optimizers, schedulers,
virtualized EPCs, etc.

LCM decisions on actions involving resource elements, if
not taken with care and deliberations, may have an inadvertent
adverse impact on other resource elements that may be relying
on shared services. For example, a migration decision on a
VNF belonging to a particular active NS may not only have an

This is a pre-printed version of the article

SUBMITTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 2

adverse impact on the overall QoS of the NS itself but, it may
also inadvertently exacerbate the QoS of other VNFs that may
be sharing resources with the migrated VNF due to resource
contention. Thus, the QoS degradation of one NS may also
impact on the QoS of all other NSs relying on the services
offered by that particular NS. Therefore, the CMS performs
a second iteration of LCM actions to rectify from degraded
service situations. This may incur in multiple iterations before
the optimal state is achieved. However, multiple iterations of
LCM decisions within a short span of time might result in
continuous service interruptions thereby impacting the overall
QoS/QoE. In other words, the CMS exhibits a poor Quality-
of-Decisions (QoD).

B. The Quality-of-Decisions

The notion of Quality-of-Decisions (QoD) was pioneered
in [3] as an indicator of the effectiveness of CMS in terms
of imparting MANO decisions. In particular, the QoD is mea-
sured in terms of the following mutually dependent criteria:

1) The efficiency of the management action. The resource
efficiency is in turn measured in terms of:
• Whether both the long-term and short-term resource

requirements of the managed VNF is fulfilled in the
selected compute node;

• How non-intrusive a management action has been
for other VNFs that are already provisioned in the
selected compute node.

2) Number of times the management action has to be
executed before the most-suitable compute node is de-
termined to migrate or scale the managed VNF.

The QoD of the CMS in turn depends on both the quality
and quantity of the information that it receives from the
monitoring system. The quality depends on the variety of KPIs
that is reported to the CMS whereas the quantity depends
on the frequency of KPI updates that the CMS retrieves.
Information provided by a monitoring system may include a
variety of KPIs, e.g., percentage-utilization of specific resource
units and aggregate resource utilization values of all the
VNFs in a physical machine, load experienced by individual
VNFs, other QoS parameters, etc. The CMS may then analyze
the received data in order to find the state of the NS and
take appropriate LCM actions, for e.g. whenever it senses
high-utilization events. Moreover, a CMS may manage and
orchestrate services that span across multiple data-centers
that are geographically apart [4] and thus rely on receiving
monitored data from all the data-centers that are under the
CMS administrative domain. However, the problem being that
considering the size of an NFVI, where a single NFVI-PoP
may host 100s of 1000s of compute nodes and, each compute
node may host 10s of 100s of VNFs and thus, the CMS ends
up managing 1000s of VNF instances. The scale of the assets
that the CMS requires to monitor further increases in case of
multiple data-centers.

Taking into consideration the scale of the resources mon-
itored by the CMS results in a very high load that must
be delivered periodically by the monitoring system thereby
leading to a high processing load due to data processing and

analysis activities. This also causes a processing delay that
may result in sluggish reaction to unwanted events. Even
with the provisioning of sufficient monitored data, the QoD
of the CMS cannot be guaranteed as it depends also on the
intelligence of the orchestration algorithm that exploits data
from the monitoring system.

C. Objectives and contributions

The challenge is thus to jointly optimize both the CMS
orchestration process and monitoring process. In this paper,
we propose a novel orchestration mechanism, which we refer
to as zero-Touch ORCHestration (z-TORCH) method that
autonomously enhances the QoD of the CMS orchestration
logic at minimum monitoring load during run-time operations.
The challenge becomes all the more complex considering the
multi-dimensional nature of the cloud infrastructure with a
variety of KPIs and resources resulting in a myriad of per-
mutations. Therefore, we address such issue by employing a
machine-learning-based method. In particular, we rely on two
different techniques: the former is the unsupervised learning
for processing “unlabeled” data about the monitored VNF
KPIs so as to efficiently cluster them into accurate VNF
profiles, the latter is the reinforcement learning to iteratively
find a trade-off between solution reliability and complexity
(and overhead) of the monitoring system.

The contributions of our paper can be summarized as
follows: i) we propose an unsupervised binding affinity process
in order to profile the VNF KPIs, unveil the correlations
between VNF behaviors and group them into VNF affinity
groups, ii) we analytically study the complexity of our z-
TORCH solution and empirically evaluate its convergence
properties, iii) we devise an adaptive mechanism to dynami-
cally change the number of affinity groups and properly tune
the accuracy of the unsupervised binding process, iv) we
adjust the CMS monitoring frequency based on VNF statistical
information by means of the Q-learning theory, v) we use a
commercial virtualized EPC to configure our VNF profiling
for performance evaluation purposes, and vi) we show via an
exhaustive simulations campaign that z-TORCH exhibits near-
optimal performance at low monitoring costs.

The rest of the paper is organized as follows. The next Sec-
tion II gives an overview of the related work. This is followed
by Section III providing the detailed description of the system
model and the overall z-TORCH architecture. Section IV, Sec-
tion V and Section VI show the algorithmic details of our VNF
profiling process, VNF placement optimization solution and
adjustable monitoring load, respectively. Section VII provides
the details of our simulation environment and the performance
analysis of the proposed z-TORCH method. We also propose
options for the practical deployment of our proposed method
in a standard CMS, which is the ETSI NFV MANO system [5]
in Section VIII. Last, we present a summary of our work and
analysis in Section IX.

II. RELATED WORK

The work presented in this paper focuses on the joint opti-
mization of VNF orchestration and monitoring process. There

SUBMITTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 3

are three main modes—in terms of monitoring process—
through which the CMS may receive monitored data: Periodic
Mode that enables periodic delivery of monitored data, where
the period and type of data is specified, Pull Mode that
provides monitored data only when solicited by the CMS, and
Push Mode that sends monitored data only when a specific
event is triggered, for e.g. CPU burden or when a network
load on a VNF exceeds some specific threshold.

While those methods, and combination of them [6], have
been exhaustively explored in the literature, they present
significant limitations. Periodic reports are identified as the
straightforward approach to keep monitoring the resources
status but, in case of very large data-centers, it considerably
exacerbates the burden and complexity of the monitoring
process. Conversely, pull requests option solves the huge
overhead issue but it needs a proper design in order to provide
the QoE/QoS guarantees and may make the CMS miss out on
some critical events. Lastly, the push mode can be tuned so
as to recover the system when it is close to alert-states but it
may prevent from an optimal allocation/distribution of VNFs
within the available compute nodes. Thus, none of these three
traditional techniques offer a reliable and optimized solution
for large scale NFVI-PoPs and their shortcomings have an
adverse impact on the CMS’ QoD. Therefore, there is an
impelling need to develop an adaptive approach where the
monitoring system can adapt according to the events.

In terms of adaptive monitoring systems, there are proposals
related to adaptive sampling especially in the domain of
wireless networks where energy, processing and bandwidth
resources are at premium. Some of them utilize learning tech-
niques like reinforcement learning to make optimum choice
of sampling data. Typically such approaches would include
clustering, data aggregation and prediction to determine the
data sampling frequency. For example [7] proposes an adaptive
model selection (AMS) algorithm that relies on a-priori knowl-
edge of models which is used by the sensor to compare its real
measurement with the predicted ones, and only communicate
data in case of large variance between the measured and
predicted values. This saves on the communication load but
it is still computationally expensive as the sensors need to
continually sample measurements besides other shortcomings.
[8] optimizes the query method of GWs for collecting periodi-
cal data from the monitored objects by employing a statistical
technique called principal component analysis on historical
traces of sensory data to automatically identify sensors that
measured most of the variance observed in the environment.
Data from only those sensors would then be collected reducing
the transmission cost by up to 50%. This approach however
does not take into account unpredictable environmental evo-
lution yielding inaccurate data. Such a method is not feasible
owing to the more frequent unpredictable workload variation
on VNFs inside the NFVI. Another proposal is [9] that
employs single rule defining the sampling interval according
to the Time of Day, where sampling frequency is high during
busy hours periods. It also employs Dual Prediction scheme
(DPS) for prediction outside the busy hour based on historical
data. This method again cannot be relied on in large scale NFV
environment where multiple NS may exist with a different

busy hour definition. A more recent work reported in [10]
proposes a dynamic sampling rate adaptation scheme based
on Reinforcement Learning that is able to tune temperature
sensors sampling interval on-the-fly, according to environmen-
tal conditions and application requirements. The optimization
goal is to avoid oversampling and save energy. The method
selects from a predefined set of sampling frequencies making
it unsuitable for the more dynamic and multi-variable NVF
environment. Moreover, adaptive sampling methods usually
focus on intelligently varying sampling frequency but ignore
the duration of the surveillance epoch. Both these factors
are crucial in NFV environment as the CMS is supposed to
consider a LCM decision at the end of each surveillance epoch.

In the context of NFV orchestration, a large library of works
is present proposing different VNF placement algorithms with
different optimization goals. Each proposed solution is unique
to its own problem space and use case. We only present some
of the more recent works in order to give an overview of
the prevailing trends and needs of the industry in this very
important problem space.

The authors in [11] propose VNF placement algorithms with
two-fold objective of minimizing path between users and data
anchor gateways, and optimizing the sessions’ mobility. In
[12] the authors propose a time-efficient heuristic based on
affiliation-aware VNF placement for NS deployment. It also
proposes an on-line forecast-assisted NS deployment algorithm
that predicts the future VNF requirements. For optimizing the
VNF placement decisions in response to on-demand workload,
[13] proposes a solution called Simple Lazy Facility Location
(SLFL) that results in the doubling of workload acceptance
while incurring similar operational costs compared to first-fit
and random placements. [14] explores the problem of VNF
placement problem in the context of network load balancing
in data-centers. It explores the placement of VNFs in smaller
clusters of servers in the network thus minimizing the distance-
to-the-data-center problem while considering the resources
utilization. The authors study the problem of VNF placement
with replications to help load balance the network. They
design and compare three optimization methods, including
Linear Programing (LP) model, Genetic Algorithm (GA) and
Random Fit Placement Algorithm (RFPA) for the allocation
and replication of VNFs showing significant improvement
in load balancing. In the context of enterprise WLAN, [15]
proposes a VNF placement algorithm for optimizing the func-
tions deployment according to application level constraints.
The proposal depends on the presence of hybrid nodes that
combine the forwarding capabilities of a programmable switch
with the storage/computational capabilities of a server. On
similar trends, [16] studies the on-demand deployment of
VNFs in telco CDNs.

All of the above cited work tackle the VNF placement
problem with a narrow viewpoint of a particular use case
with specific requirements. However, there is a need to have
a more universal approach to the VNF placement problem in
particular and NFV Orchestration in general. Moreover, none
of the above proposals take into account the orchestration cost
and the monitoring load. The only work that does consider the
CMS orchestrator QoD is one of our earlier works in [3], [17],

SUBMITTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 4

Cloud Management System

Analytics Engine

(AE)

Decision Engine
(DE)

PHY NIC

Server-1 Server-2 Server-n

3 4

X VM

MA MA

MA Monitoring Agent MS

MS Monitoring Server

Policy

Compute/storage

Virtualization layer

MA

5 6 MA MA

Virtualization layer

MA

1 2 MA MA

Virtualization layer

MA

Fig. 2. Generic cloud management system.

in which we present a Resource Aware VNF Agnostic (RAVA)
orchestration method that employs a very different approach
of using Pearson Correlation method for optimum placement
of VNFs with reduced orchestration cost. This method relies
heavily on the frequent provisioning of monitored data from
the underlying monitoring system. Moreover, the method does
not provide an accurate VNF profile, which is a crucial aspect
of the placement decisions. In view of this, we propose z-
TORCH that jointly optimizes the NFV orchestration and
monitoring process so as to achieve near-optimal placement of
VNFs at reduced monitored load while enhancing the CMS’
QoD.

III. SYSTEM CONCEPTS AND MODEL

We consider a generic cloud system, as the one depicted in
Fig. 2. The infrastructure consists of multiple servers (referred
to as compute nodes) and VMs deployed in each server. The
server resources (e.g., compute, network, storage, memory) are
virtualized and allocated to each VM based on the respective
VM requirements. A VM when configured with some network
function is referred to as a VNF, or when configured with
some application function it is referred to as a Virtualized
Application Function (VAF) [18]. For the sake of clarity, we
consider only VNFs in our analysis. A VNF may belong to
one or more virtual service instance and the CMS is supposed
to manage and orchestrate the infrastructure resources in order
to ensure service integrity and to ensure that each VNF is able
to fulfil the operational and functional needs of the respective
configured application or function.

To achieve that, the CMS relies on an advanced monitoring
system. Given the plethora of available options, we consider
in our work a monitoring system called Zabbix [19], where
the Monitoring Server (MS) is deployed and configured within
the CMS, and the MS interacts with one or more Monitoring
Clients (MC). The MC instances are distributed within the
infrastructure and each MC instance is associated with the
entity, for example a VNF and a compute node that needs to be
monitored. A MA is an agent for the MS that simply monitors,
samples, collects and record the relevant metrics providing
them back to the MS. The MS after pre-processing phases
passes the data to the Analytics Engine (AE) that processes the
monitored data and provides the required analysis output to the
Decision Engine (DE). The DE then takes some relevant LCM

VNF Profile
Deviation

VNF affinity
groups (§ IV.A)

VNF binding
affinity (§ IV.A)

VNF Optimal
placement (§ V.A)

Monitoring frequency (δ)

VNF Profile
monitoring (§ V)

CM
S

--δ

Update N

Surveillance Epoch
Adjustment (§ VI)

++δ

Update ωSurveillance Epoch (ω)

Fig. 3. Functional blocks of the z-TORCH solution.

decisions based on some prescribed policy. Please note that
the DE informs the AE with its decision choice and, based on
that, the AE is able to derive and provide suitable configuration
parameters to the MS for future monitoring rounds. Finally, the
MC is configured via MS by specifying the relevant metrics
and KPIs that the MC is supposed to monitor and record.
The MC is also configured with the monitoring granularity
(or frequency of monitoring samples).

A. z-TORCH: A dynamic monitoring and deciding process

Our proposal allows to re-think the classical CMS monitor-
ing and function placement process by introducing a machine-
learning-based approach. In particular, we devise a new solu-
tion able to i) properly select and monitor relevant VNF KPIs,
ii) evaluating them based on prior (learned) information, iii)
optimally place them into available compute nodes to keep
the system within stable working conditions, iv) derive and
schedule the next monitoring and decision time instants based
on VNFs behaviours information. While this entire framework
might appear complex and over-demanding, however it dis-
tributes the complexity of a centralized solution over MCs
that are dynamically configured.

Fig 4 shows the overall process. We define a Surveillance
Epoch (ω)1 as the time window within which we monitor
the VNFs’ KPIs. Monitoring operations are performed at
different Sample points, spaced by δ. Surveillance epochs last
ω and are delimited by decisional points defined as points in
time where our solution takes LCM decisions. In particular,
LCM decisions might comprise: i) changing the frequency
of monitoring information (δ), ii) changing the length of the
surveillance epoch (ω), iii) optimal placement of VNFs based
on unsupervised binding affinity calculation. When a critical
resource shortage is detected, an alert message is captured
by a sample point so that the next decisional point may be
expedited to handle unexpected network changes.

B. General solution overview

Our novel concept of self-monitoring and proactive function
placement relies on the concept of an adjustable monitoring
frequency based on the machine-learning paradigm. Fig. 3
provides an example of the general process indicating the
relevant sections where the respective process is described.
At the beginning, the decisional point requires the CMS to

1To avoid notation clutter, we have removed index (τ) from ω(τ). However,
a formal definition of ω(τ) is provided in Section VI.

SUBMITTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 5

Time t=0

Surveillance epoch

Sample point

δ

ω

Decisional point

VNF 1 VNF 2 VNF 3

t=tx t=ty

VNF profile
deviation

Training sample set

ALERT

Aggregate Resource Consumption

Fig. 4. Time evolution of z-TORCH.

generally place VNFs onto available compute nodes. This
initial operation might be performed without any a-priori
information, namely blind-placement, or with some previous
information gathered during a training phase. After placing
VNFs, the CMS decides the frequency of sample points, i.e.,
the frequency of monitoring requests each server feeds back to
the CMS. This directly affects the overall monitoring overhead
that might be unaffordable when facing with thousands of
VNFs [1]. In addition, the CMS dynamically decides the
length of the surveillance epoch based on a reward function
obtained, as explained in Section VI.

The KPIs of any single VNF are identified, based on VNF
descriptors available beforehand [5], and are processed. This
helps to provide an accurate profile of each VNF running in our
system, as described in Section IV. While the number of KPIs
may consistently grow, our solution proposes an unsupervised
binding affinity calculation to properly find out the correlation
among them for any specified VNF. For the sake of simplicity,
we consider the generic KPIs for any VNF, such as Network
Load, Computational Burden and Storage Utilization 2. A clear
example is represented by a firewall VNF. It might be charac-
terized by a high network demand and high storage utilization
whereas it might exhibit low computational burden. Affinity
values, which indicate the correlation among different VNF
profiles, are gathered by the CMS, which can optimally place
the VNFs into compute nodes while keeping the overall load
of any single compute node in balance. When the functions
placement occurs (at t = 0 in Fig. 4), a default monitoring
frequency δ and surveillance epoch ω are fixed. At the next
decisional point (ω), the CMS detects any VNF differing from
the prior profile information, namely VNF profile deviation.
This automatically forces the CMS to increase the monitoring
frequency in order to anticipate any unexpected critical event,
such as compute node resources outage. At the next decisional
point, if no other VNF profile deviation has occurred, the
monitoring frequency is reduced and the reward function is
increased (as explained in the Section VI), which, in turn,
enlarges the surveillance epoch ω. Conversely, if additional
VNF profile deviations have occurred, a new VNF profiling
is performed based on the Training Sample Set. In this case,
the monitoring frequency is restored to a default value and the

2While the number of KPIs might be consistent, our solution still provides
reasonable results when compared against state-of-the-art solutions, as shown
in the next sections.

S
to

ra
ge

 U
til

iz
at

io
n

(m
)

Network Load ()

Computational Burden (
)

100

80
10060

50

40
50

20

100

VNF 1 VNF 2 VNF 3 VNF 4

High-demanding
VNF Profile

(t) = 75.1%
(t) = 42.4%

m(t) = 4.6%

(1) = 38.2%
(1) = 60.8%

m(1) = 100%
{p

1
(1)

p
i
(t)

VNF
Profile Deviation

Fig. 5. Characterization of VNF profiles in a 3-dimensional space.

Surveillance epoch length is reduced (as the reward function
is decreased).

IV. VNF PROFILING PROCESS

VNF characteristics can be efficiently analyzed with the
aim of properly profiling the resource utilization. In particular,
we rely on machine-learning-based techniques to learn from
general behaviours so as to be proactive in case of compute
node resources shortages.

We can define the vector p(t)i = {m
(t)
i , µ

(t)
i , η

(t)
i }, where p(t)i

is the set of monitored information for each VNF i running
in our system at time t whereas m, µ, η are the utilization of
storage, CPU and network resources, respectively. This vector
can be depicted as a single-point in a 3-dimensional space S
within a snapshot of time t. In Fig. 5, we show different VNF
profiles at consecutive time-snapshots to give a clear idea of
our model. The plotting space can be partitioned to identify
zones with specific profile properties. For instance, we have
highlighted with a yellow sphere the zone wherein VNFs are
marked as high-demanding: the main idea is to leverage on
such profile partitioning in order to proactively place VNFs
into compute nodes while keeping the system stable, i.e., when
it does not require further VNF migrations that, in turn, results
in high Quality-of-Decisions (as explained in Section I-B).

SUBMITTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 6

A. Unsupervised binding affinity

After defining our modelling space S, we need to character-
ize different areas based on some peculiarities of all gathered
VNF profiles. Without loss of generality, we truncate the index
(t) from p(t)i when not needed. Given a number of affinity
profile groups N = |N |, our problem can be formalized as
the following: Finding non-overlapping affinity profile groups
n ∈ N such that i) the union set of those groups is equal to
the VNF profile space S, ii) each affinity group contains at
least one element pi , iii) all VNF profiles pi must be placed
in one VNF profile group.

Each VNF profile group n ∈ N is characterized by a center
of gravity cn = {cn,(1), cn,(2), · · · , cn,(z)}, where z ∈ Z is the
spatial dimension (Z = |Z| = 3 in our example). The center
of gravity of group n is obtained as the spatial point with the
least Euclidean distance from all other VNF profile values pi
associated to that group n. Mathematically, we can formulate
the optimization problem as the following

Problem VNF-Affinity:

minimize
|N |∑
n

|I |∑
i

xi,n(| |cn − pi | |2)

subject to
∑
n

xi,n = 1, ∀i ∈ I;∑
i

xi,n ≥ 1, ∀n ∈ N ;

cn ∈ R
|Z |;

xi,n ∈ {0, 1},

where the outputs are cn defining the spatial coordinates
(KPIs) of each center of gravity, and the binary values xi,n
indicating whether VNF i is grouped into affinity group
n, whereas | | · | |2 is the Euclidean distance between the
center of gravity cn for affinity group n and each VNF
profile pi . Specifically, the Euclidean distance depends on the
number of KPIs (or spatial dimensions Z) considered, i.e.,

| |cn − pi | |2 =

√
Z∑
z

(
cn,(z) − pi,(z)

)2. In our example, it holds

that pi,(1) = mi, pi,(2) = µi, pi,(3) = ηi .
In the following paragraphs, we perform the complexity

analysis and explain how our heuristic ekm works. Then, we
describe the process of calculating the density of the affinity
groups N based on the current system status. Please note
that the number of affinity groups N is decided beforehand
and provided to our heuristic. This shall allow the CMS
to automatically cope with unexpected system changes and
quickly react to keep the system stable.

Complexity analysis. While the number of affinity groups
is given, Problem VNF-Affinity might be still untractable
and it might not be solved in an affordable time. This is stated
in the following theorem.

Lemma 1. Given a number of affinity profile groups N ≥ 2,
multiple VNF i ≥ N and multiple KPIs Z ≥ 2, Prob-
lem VNF-Affinity is NP-Hard.

Sketch of Proof: We consider Z = 2 KPIs and N = 2
affinity profile groups. It is clear that the problem falls in
NP. We can apply a polynomial reduction to the well-know

Algorithm 1 Enhanced k-means (ekm)

1) Initialise t = 0 and xi,n = 0, ∀i ∈ I, n ∈ N .
2) Initialise set cn(t) by using the VNF profiles classification.
3) Update ∆(t) = 100

2|I | · t
√
I .

4) Apply a grid of points ws ∈ S on the VNF profile space
S such that | |wξ − wζ | |2 = ∆

(t), ∀ξ , ζ, (ξ, ζ) ∈ S.
5) Set x(t)

i,n
= 1 : n = arg min

n
| |cn
(t) − pi | |2, ∀i ∈ I.

6) Calculate the center of gravity set
cn
(t+1) = 1∑

i x
(t)
i,n

∑
i∈I

(
pi · x

(t)
i,n

)
, ∀n ∈ N .

7) Update the center of gravity set based on the nearest grid
point cn(t+1)= ws : s = arg min

s∈S
| |ws − cn | |2, ∀n∈N .

8) If cn
(t+1), cn(t) then increase t= t + 1 and jump to (3).

graph k-coloring problem ([20]). In particular, we are given
an instance of the graph G(V, E) wherein vertices are VNF
profiles V = {1, 2, i, . . . , I} and edges are placed between two
points with the largest distance. Therefore, we can formulate
the following problem: given k available colors, is there any
graph coloring solution that assigns different colors to vertices
connected with the same edge? Assuming that this problem
is NP-Complete and considering the color of each vertex as
an affinity group, we can state that this problem is reducible
to Problem VNF-Affinity in a polynomial time and thus,
Problem VNF-Affinity is NP-Hard. When considering
multiple affinity profile groups N ≥ 2, it is hard to place
the edges in the k-coloring graph [21], making the problem
even harder. When considering multiple affinity groups and
multiple KPIs Z ≥ 2, it is even more difficult to find a
solution to Problem VNF-Affinity, which proves that the
NP-Hardness is rather strong. �

Enhanced K-means heuristic. When dealing with NP-Hard
problem, a fast and reasonable heuristic is needed to boil down
the complexity of a greedy-search solution. There is a large
library of work that address this problem, but we focus on a k-
means heuristic [22] solving the problem within O(I ·N · Z · c)
time-complexity [23], where c is the number of rounds to
converge as explained next.

We rely on the classical definition of k-means algorithm
and improve it to handle the complexity of our VNF affinity
modelling [24]. The main idea behind the well-known algo-
rithm is to devise an iterative-algorithm able to randomly select
the centres of gravity cn (regardless of the number of spatial
dimensions Z) and partition the whole space based on the
nearest distance rule from each of those centres cn. Iteratively,
the algorithm recomputes the new centres of gravity based
on the current group member properties pi and apply again
the partitioning process until the centres of gravity do not
change their positions. As proved by [23], in the worst-case
the algorithm might take up to 2Ω(

√
I) steps to converge. We

enhance the performance of such an algorithm by applying a
regular grid on the affinity space S, namely enhanced k-means
(ekm) algorithm. Points ws ∈ S of the grid are equally spaced
from each other. We then constrain the centres of gravity of
each VNF affinity group to reside on some specific spatial
points. The granularity of such grid span, i.e., the distance ∆,
drives the speed of our algorithm and may be dynamically
adjusted to speed up the process while keeping the accuracy

SUBMITTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 7

of the found solution. This is performed by a step-function
∆(t) = 100

2|I | · t
√
I : the more the steps to converge, the higher

the slope of the step-function. Practically, we design a step-
function which grows slowly during the first steps (depending
on the number of VNF profile points I, i.e., the more the
points, the slower the growth) and then, it exponentially grows
as the number of steps becomes consistent. This helps the
system to find a very accurate solution in the first steps, while
forcing the algorithm to quickly converge if the number of
steps is high.

The algorithm pseudo-code is provided in Alg. 1. To avoid
the effects of randomness and to make our solution more
efficient, we initialize the set of centres of gravity cn (line 2)
based on a VNF profile classification. Interestingly, this clas-
sification can be performed by means of external information
providing VNF profile templates (in terms of expected KPIs),
given a number of VNF affinity groups N . For example, when
N = 2 VNF affinity groups are defined, VNF profile templates
may influence the initial choice by placing the centres of
gravity at cn=1 = {75%, 75%, 75%} for the high-demanding
VNF profiles and at cn=2 = {25%, 25%, 25%} for the low-
demanding VNF profiles. Clearly, such training data may be
automatically updated by the infrastructure provider through
a monitoring process.

VNF affinity groups density. While ekm algorithm can
solve and provide a VNF affinity grouping solution within
an affordable time, the key-aspect is the number of VNF
affinity groups to build. We leverage on the feedback-loop
paradigm to design a controller in charge of monitoring the
system status and triggering a different number of VNF affinity
groups when some events occur. The rationale behind is that
the affinity grouping procedure may fail and we need to
promptly update the number of groups to handle unexpected
VNF profile behaviors. Therefore, with some abuse of notation
we define the concept of VNF profile deviation, as introduced
in Section III-B, as follows:

Definition 1. A VNF profile deviation is an event occurring
when a VNF profile p(t)i changes its KPIs from time t to t + 1
falling into a new VNF affinity group n ∈ N , i.e., x(t)i,n , x(t+1)

i,n .

VNF profile deviations give an indication about the accuracy
of our affinity grouping process: if the grouping process failed
to capture the variance of its members (pi), we need to re-run
the grouping process assessing the new VNF profile features.
This may highly impact on the VNF function placement (as
will be discussed in Section V-A) and may result in a service
disruption because of a compute node resources outage.

Fig. 6 shows an example for a 2-dimensional space, i.e.,
considering only 2 KPIs for any VNF profile pi . In particular,
we show a VNF profile at different times (with solid filled
shapes). Please note that those values are snapshots captured
at different sample points, as explained in Section III-B. When
a VNF profile deviation occurs, an alert message is triggered
and more sample points are required (in the next surveillance
epoch) to take over the compute node control if some VNF
profile exceeds the maximum capacity. At the next decision
point, a new VNF affinity binding process is executed and the

--N

++N

a) Decreasing the number of affinity groups when a VNF profile deviation occurs

b) increasing the number of affinity groups as no VNF profile deviations occurred

Fig. 6. Changing the number of VNF affinity groups based upon VNF profile
deviation occurrences.

number of VNF affinity groups N is reduced. This will likely
avoid further VNF profile deviations and perform an optimal
VNF placement. Conversely, if the VNF profile behavior is
predictable and does not exhibit significant changes, after 2
surveillance epochs the system automatically increases the
number of VNF affinity groups to be more accurate in the
VNF profiling process. We initially assume the lowest possible
number of VNF affinity groups set to 2.

V. VNF PLACEMENT BASED ON GATHERED INFORMATION

The number of sample points gathered for the VNF profiling
process could significantly affect the VNF placement and,
in turn, the overall network performance. Ideally, an infinite
number of monitoring samples unveils the correct behavior of
such VNF making accurate the VNF profiling. However, this
might exacerbate the complexity and the overhead of control
messages when applied to a plethora of VNF instances. In
our proposal, we trade off the number of monitoring samples
against the accuracy of VNF profiling process, which may lead
to a huge number of LCM operations, such as migrations or
scaling up/down.

Let us consider the realization of a point process γi,(z) =∑T
t=0 δtpi,(z)(t) as the evolution of VNF i and KPI (z), where

δt is the Dirac measure for sample t.

Lemma 2. Given that the VNF profile evolution process is
ergodic and stationary within reasonable short time period
(i.e., surveillance epochs), VNF statistical properties can be
obtained from any realization of the same process over time
or from multiple process instances evaluated at the same time.

Sketch of Proof: The proof is rather straightforward. For
reasonable short time-lengths of the surveillance epoch, we
can consider the VNF profile evolution process as ergodic and
stationary, as shown in Section VII-A. This directly implies
that γ̄i,(z) =

1
K

∑K
k=0 X[k] = 1

T

∑T
t=0 pi,(z)(t), where k are

multiple instances of the same process whereas t are different
times. This proves the lemma. �

This lemma helps to significantly reduce the number of de-
cisional points, wherein our VNF affinity binding is executed.
In particular, we can collect several profile values of the same
VNF (experienced at different sample times) or different VNF
instances of the same type to properly characterize a specific
VNF profile. Therefore, we use all samples collected within 2
surveillance epochs in case of an alert message triggered.

SUBMITTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 8

A. VNF optimal placement

Once the VNF affinity binding has been successfully com-
pleted, the CMS will automatically place VNFs into available
compute nodes based on their profile values and their affinity
group associations. This being one of main findings of our
paper: the objective of our solution is to find an optimal
placement that i) takes into account the statistical variance
of the VNF profile values pi , ii) places the VNF in order to
avoid further LCM operations, such as migrations, iii) equally
balances compute nodes load to keep the system stable and to
reduce the number of monitoring messages (sample points),
i.e., to limit the overhead of the monitoring procedure.

We first apply the VNF placement process to VNF affinity
group instances, i.e., considering the center of gravity of each
VNF affinity group as a single VNF profile instance. We
can formulate the following integer linear programming (ILP)
problem

Problem Proactive-VNF-Placement:

maximize
∑
l∈L

log
∑

n∈N

(
| |cn | |yl,n

)
subject to

∑
n∈N

cnyl,n ≤ Pl, ∀l ∈ L;∑
l∈L

yl,n ≤ 1, ∀n ∈ N ;

yl,n ∈ {0, 1},

where | | · | | is the L-1 Norm of a vector, l ∈ L is an available
compute node in our system, Pl = {Pl,(z)} is the set of
maximum resource availability for compute node l in terms of
KPI (z) whereas yl,n is the binary value indicating whether the
VNF class n is placed into compute node l. The log operator
is needed to provide fairness between different compute node
loads. While Problem Proactive-VNF-Placement is
proved to be NP-Hard 3, the solution can still be found within
an affordable time as the number of variables, i.e., the number
of VNF affinity groups N , is very limited. In our simulation
campaign, we adopt a commercial tool, namely IBM ILOG
CPLEX [26], to solve the optimization problem.

The solution optimality of Problem
Proactive-VNF-Placement can be guaranteed if
each VNF profile accurately follows the center of gravity
of its assigned affinity group. In other words, the solution
optimally works if the bias (variance) from the mean value
of the affinity group is very low. Conversely, as soon as the
VNF profile values move away from the average properties
of its group the scheduling solution might fail leading to
unstable system states and service disruptions. Therefore, we
devise a VNF scheduling algorithm taking into account the
general scheduling information of the VNF affinity groups
but applying the current KPIs information of each VNF to
correctly balance the compute nodes load.

The pseudo-code of our algorithm, namely Affinity-aided
VNF Scheduling (AaVS), is listed in Alg. 2. Our idea is to rely
on the First Fit Decreasing (FFD) algorithm [27], suggested
for bin backing problems. In particular, we calculate (Line 1)

3Due to the pages limitation, we skip the formal proof as the problem can
be reduced in a polynomial time into a bin packing problem, known to be
NP-Hard. However, we refer the reader to [25] for further details.

Algorithm 2 Affinity-aided VNF Scheduling (AaVS)

1) Initialise vi = max
t∈ω
(| |pi

(t) − cn | |2 : xi,n = 1, ∀i ∈ I.
2) Initialise set Hl = ∅, ∀l ∈ L, Bn = ∅, ∀n ∈ N , F = ∅

and l = 0.
3) Place i → Bn, ∀n ∈ N if xi,n = 1.
4) Sort Bn, ∀n ∈ N according to vi in a decreasing order.
5) For every n, take the first i from Bn and Place i → F if

yl,n = 1. If i does not fit, Take the next i in Bn.
6) Remove all i placed in F from Bn. Update Hl ← F .
7) If there is any n : Bn , ∅ then Increase l = l + 1, Update
F = ∅ and go to (5).

the VNF profile variance as vi = max
t∈ω

(
| |pi
(t) − cn | |2

)
along

the last (at least 2) epochs ω. This is further supported by
Lemma 2. Based on variance, each VNF profile value is sorted
within its affinity group (Line 4), leaving at the first position
the VNF profile which has experienced much variations (and
might be considered as unstable). The rationale behind is
that we need to first place the VNF profile which might
cause (in the worst case) unexpected compute node resource
outages. Iteratively, we try to schedule the other VNF profiles
based on Problem Proactive-VNF-Placement (Line 5),
i.e., based on yl,n. Upon all VNFs have been scheduled into
compute nodes l, our algorithm ends.

Assuming that the compute nodes deployment is over-
provisioning, Problem Proactive-VNF-Placement can
reasonably purse at balancing the load of compute nodes
and keep them in a stable state without dangerously ap-
proaching the saturation point. Nonetheless, to avoid un-
expected compute node resources saturation, Pl in Prob-
lem Proactive-VNF-Placement can be properly chosen
by the infrastructure provider. When AaVS is applied, the fair-
ness among different compute nodes can significantly degrade
because of unpredictable VNF profile spikes. Therefore, we
design a controller in charge of promptly changing the number
of VNF affinity groups (and re-grouping VNFs profiles) when
VNF profiles significantly differ from the VNF affinity group
properties, as explained in Section IV-A and empirically
shown in Section VII. However, the entire process could be
affected by the length of the surveillance epoch ω, which is
dynamically adjusted, as explained in the next section.

VI. MONITORING OVERHEAD ADJUSTMENT

The decisional points play a key-role because: i) at those
times the system might re-build the affinity groups and im-
prove the accuracy of the VNF placement that, in turns, trans-
lates into a better Quality-of-Decisions (QoD) and less LCM
operations in the near future due to a stable system conditions,
ii) complexity and overhead of the DMD are strictly related to
the frequency of the decisional points, i.e., surveillance epoch
length ω. An optimal trade-off must be found based on the
current system conditions as well as previous observations.
We design an adaptive scheme to keep track of previous
alert triggers while increasing the surveillance epoch when
the stability of the system can be preserved for a longer time
period.

Our scheme is based on the well-known Q-Learning ap-
proach [28]. The main idea behind is to learn from previous ac-
tions and obtained rewards in order to take the optimal decision

SUBMITTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 9

in the future while pursuing the reward maximization. Without
loss of generality, we define the index of surveillance epoch
as well as the decisional point at the end of a surveillance
epoch by τ ∈ T . Let us define the state space π ∈ Π as
the number of VNF profile deviations j experienced at the
previous decisional point, i.e., πτ = j(τ−1). At every decisional
point τ, our system may take different actions aτ on how much
to increase (decrease) the next surveillance epoch ω(τ+1), i.e.,
aτ = {+k · o}, where o is defined as the least step size. After
taking an action aτ , the system will be rewarded based on a
reward function R(πτ, aτ) = ω(τ)

j
β
τ

, where ω(τ) is the length of
the surveillance epoch between two decisional points τ − 1
and τ. The objective is to maximize the surveillance epoch
ω while keeping low (or zero) the number of VNF profile
deviations occurred in the last surveillance epoch, which might
compromise the stability of our system. β ≤ 1 is a tunable
parameter that can be adjusted by the infrastructure provider
to have a slower (faster) changing of the surveillance epoch
at expense of less (more) scheduling optimality.

Our solution builds a Q-table collecting the reward coming
from each possible pair (π, a) based on the following equation

Q(π, a)= (1 − α)Q(π, a)+α
[
R(πτ, aτ, πτ+1)+ψqmax

]
, (1)

where qmax = max
aτ+1

Q(πτ+1, aτ+1), and R(πτ, aτ, πτ+1) is the

reward obtained from action aτ leading to state πτ+1. α and
ψ are the learning rate and the discount rate, correspondingly.
The former balances the stored information (in the Q-table)
against the current observed ones. It is usually set differently
per state and evolving over time, i.e., ατπ,a =

0.5
i(π,a) , where

i(π, a) is the number of times we have explored state π by
time τ. The latter gives a less weight to old information, which
could become incorrect. This is useful when the stationary and
ergodic assumption on the VNF statistical properties could not
be taken for very long periods (please refer to Section V). This
is commonly fixed to 0.9 ([28]). When a new action must be
taken, our system may select it randomly (with probability
φ ≤ 1) among available actions a ∈ A or it can select the one
maximizing the reward (with probability 1 − φ) based on the
information stored in the Q-table, i.e., a = arg max

aτ
Q(π, a).

VII. PERFORMANCE EVALUATION

We conduct an exhaustive simulation campaign by means of
a mathematical tool, such as MATLAB. All building blocks
of our solution are implemented and executed using several
random seeds to keep the confidence degree of our results
below 0.1%. To validate our results, we evaluate a realistic
use case using virtual functions deployed in our testbed. This
provides a set of reference points for our VNF profiles creation
process.

A. Evaluation case: OpenEPC

We implement a real network deployment with 2 NEC
eNBs [29] and a virtualized core domain using a commercial
software, OpenEPC [30]. Our testbed deployment is shown
in Fig. 7. Mobile devices provided with a customized SIM-
card are connected to the mobile core domain, running on

SGSN

S-GW CDF

PCRF

PDN-GW

AAA
Server

ANDSF

CGF

HHSMME

Virtual Machine 1 Virtual Machine 3

Virtual Machine 2

OpenEPC 6 - Evolved Packet Core

RAN

OpenEPC OpenEPC

Fig. 7. Real Evaluation Case: OpenEPC mobile core.

OpenStack. Different KPIs for any specific VNF, such as
MME, S-GW and P-GW are collected by means of Ceilometer,
a telemetry software provided with OpenStack. The evaluation
time window is set to 2 hours and two different user profiles
are considered: high-demanding in case of data traffic upload
and download, low-demanding in case of high-mobility (sev-
eral hand-overs) but no data traffic (only control signal).

Overall results are summarized in Table I. We have classi-
fied only the most significant KPIs (in percentage), based on
the total capacity of compute nodes. Interestingly, they suggest
a specific set of requirements that are considered and exploited
throughout our performance evaluation section, ranging from
low demanding requirements, e.g., HSS for low configuration,
up to high-demanding requirements, e.g., PDN-GW for high
configuration.

TABLE I
VIRTUALIZED NETWORK FUNCTIONS KPIS (OPENEPC 6)

CPU (µ) [%] Mem (m) [%] Net (η) [%]
VNFs Low High Low High Low High
MME 17.7 2.9 15.9 3.8 5.8 1.9
S-GW 0.7 79.1 0.3 3.3 0.14 91.2
HSS 0.9 2.9 1.1 4.5 0.7 1.3

PCRF 1.2 1.9 0.6 3.9 0.5 0.9
PDN-GW 1.7 53.1 2.1 37.2 0.8 92

B. Simulation setup

The NFV system service orchestration is performed for a
huge number of VNF instances. Given the unavailability of
such a complex real testbed, we assess the performance of
our approach by means of synthetic simulations taking into
account as baseline the real values offered by OpenEPC VNFs
and, at the same time, shedding the light on the impact of a
large number of VNFs deployed on different compute nodes.

VNFs profiles are built based on a Pareto random distribu-
tion using the values listed in Table I. The long-tail effect of
the random distribution is handled with a cap to limit VNF
resource utilization to 100%. Once VNF baseline profiles are
defined, at every time slot t a VNF instance is executed and
VNF profile KPIs are generated and collected based on a
normal distribution with the VNF baseline profile as mean, and
variance σ based on the considered scenario. If not differently
stated, used simulation parameters are listed in Table II.

C. System parameters evolution

We study and discuss the evolution of the system parameters
as well as their consistent effects on the overall system effi-

SUBMITTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 10

0 200 400 600 800 1000
Simulation Time

0

20

40

60

80

100

N
um

be
r

of
 V

N
F

 A
ffi

ni
ty

 G
ro

up
s

(N
) VNFs (I) = 750

VNFs (I) = 1000
VNFs (I) = 1250

(a) VNF Affinity Groups (N) varying I

0 20 40 60 80 100
Simulation Time

1

2

3

4

5

M
on

ito
rin

g
F

re
qu

en
cy

 In
de

x
(

) VNFs (I) = 750
VNFs (I) = 1000
VNFs (I) = 1250

(b) Monitoring Frequency (δ) varying I

0 20 40 60 80 100
Simulation Time

0

20

40

60

80

100

S
ur

ve
ill

an
ce

 E
po

ch
 In

cr
ea

se
 (

)
[%

]

VNFs (I) = 750
VNFs (I) = 1000
VNFs (I) = 1250

(c) Surveillance Epoch length (ω) varying I

0 200 400 600 800 1000
Simulation Time

0

20

40

60

80

100

120

N
um

be
r

of
 V

N
F

 A
ffi

ni
ty

 G
ro

up
s

(N
)

 = 0.06
 = 0.08
 = 0.1
 = 0.12

(d) VNF Affinity Groups (N) increasing σ

0 20 40 60 80 100
Simulation Time

1

2

3

4

5

M
on

ito
rin

g
F

re
qu

en
cy

 In
de

x
(

) = 0.06
 = 0.08
 = 0.1
 = 0.12

(e) Monitoring Frequency (δ) increasing σ

0 20 40 60 80 100
Simulation Time

0

20

40

60

80

100

S
ur

ve
ill

an
ce

 E
po

ch
 In

cr
ea

se
 (

)
[%

]

 = 0.06
 = 0.08
 = 0.1
 = 0.12

(f) Surveillance Epoch length (ω) increasing σ

Fig. 8. Evaluation of adaptation parameters.

TABLE II
SIMULATION PARAMETERS

Parameters Values Parameters Values
VNF Profiles (I) 1000 VNF Baseline Profiles 5

VNF Profile KPIs (Z) 3 VNF Profile variance (σ) 0.1
Surveillance Epoch (ω) 500t Monitoring Interval (1/δ) [2, 5, 10, 20, 50]

Q-learning (β) 0.5 Simulation time 107t
Q-learning (ψ) 0.9 Q-learning (φ) 0.5

ciency from two different perspectives: i) the VNF placement
and Quality-of-Decisions and ii) the VNF monitoring load.

The main finding of our simulation campaign lies on the
concept of VNF profile variability. VNF profile variability
plays a key-role in the VNF placement and then in the overall
Quality-of-Decisions of the CMS. VNF profiles exhibiting sig-
nificant profile deviations may result in relevant performance
degradations, as the system must detect unexpected behaviours
and promptly react. We study the evolution through three
different adaptive parameters: the number of VNF affinity
groups N , the monitoring frequency δ and the surveillance
epoch length ω, as shown in Fig. 8.

The number of affinity groups N could unveil interesting
aspects. z-TORCH automatically tailors the affinity group
characteristics onto specific VNF profile properties, given that
no VNF profile deviations occur. In other words, as soon as the
unsupervised binding affinity process successfully identifies
the VNF affinity groups (keeping low the risk of profiling
failure), the granularity of such a process will be reduced
(i.e., more groups will be defined) in the next decisional
slot to increase the accuracy of the binding. Conversely,
when a failure in the binding process is detected (due to
unexpected changes), the granularity of the VNF affinity
groups is automatically enlarged leading to a fewer number of
groups (with larger scopes). This clear evidence is provided by

Figs. 8(a) and 8(d). When the VNF profile variance σ is low or
when a few VNF profiles are considered, the accuracy of the
unsupervised binding affinity process is large enough to allow
our solution to increase (quickly) the number of considered
affinity groups. This leads to a more efficient calculation
and low probability of failure when placing VNFs based on
their profile (i.e., assigned affinity group). However, when the
variability becomes consistent (or the number of VNF profiles
grows), the binding failures (due to VNF profile deviation)
might affect the accuracy of the process that automatically
enlarges the scope of each single affinity groups so as to
account for unexpected variability while reducing their total
amount.

Another important feature of z-TORCH is the monitoring
load which is directly triggered by the monitoring frequency
δ. In our simulations, we consider a fixed set of 5 frequency
intervals, where the largest index (5) results in a very low
monitoring load. Figs. 8(b) and 8(e) show the evolution
of the monitoring index. When the statistical variance σ or
the number of VNF instances is low, the system reduces the
monitoring burden, on average. This is due to a more stable
system state and a limited risk of profiling failure. On the
other side, when the number of VNF profile deviations grows,
the monitoring load needs to be promptly adapted incurring
in more monitoring messages.

The last parameter is the surveillance epoch length ω, which
has a two-fold aspect: i) it might significantly boil down the
complexity of our solution by delaying the next decisional time
for making LCM decisions and ii) it impacts on the number of
monitoring information accounted for the next binding affinity
group operation. This parameter is driven by the Q-learning
approach, as explained in Section VI. In Figs 8(c) and 8(f),

SUBMITTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 11

200 400 600 800 1000
VNFs (I)

0

10

20

30

40

A
lg

or
ith

m
 s

te
ps

 [#
]

 = 0.08
 = 0.1
 = 0.12

(a) VNF Affinity binding using ekm

10 20 30 40 50
VNF Affinity Groups (N)

0

5

10

15

20

T
im

e-
C

om
pl

ex
ity

 [s
]

(b) Proactive VNF Placement

200 400 600 800 1000
VNFs (I)

0

2

4

6

8

T
im

e-
C

om
pl

ex
ity

 [s
]

 = 0.08
 = 0.1
 = 0.12

(c) VNF placement using AaVS

Fig. 9. Solution complexity analysis.

we show the effect of the VNF profile variability σ and the
number of considered VNF profile instances I. High VNF
profile variance and huge number of VNF profile instances
result in more unstable behaviours requiring short monitoring
surveillance epochs and, in turn, more decisional times. When
the variability of the VNF instances is limited, the surveillance
epoch length on average increases (and in turn reduces the
complexity of the decisional mechanisms) and stabilizes.

D. Complexity and time performance

While the adaptiveness of z-TORCH allows to promptly
react to unexpected changes in the VNF profiles and to reduce
the monitoring load, here we show the cost in terms of
complexity of our novel mechanism for each novel algorithm.

In Fig. 9(a), we show the number of steps of enhanced
k-means (ekm) algorithm needed to converge. Notably, the
variability of the VNF profiles might affect the complexity of
the algorithm. However, the curves exhibit a sub-linear depen-
dency on the number of VNF profile instances, which makes
our algorithm suitable even for crowded VNF environment.

We next analyze the time complexity in terms of seconds
for the Proactive VNF Placement problem solution using a
commercial solver, namely IBM ILOG CPLEX. Specifically,
we run our algorithm on a dual Intel(R) Xeon CPU 2.40GHz
4-cores and 16GB RAM. Fig. 9(b) shows the time complexity
in terms of elapsed seconds when considering a different
number of VNF affinity groups. As expected the complexity
of such solution grows exponentially with respect to the
number of affinity groups (centres of gravity) due to the NP-
Hardness property of the optimization problem described in
Section V-A. However, in realistic environments the number
of VNF affinity groups is low when compared to the number
of VNF profile instances, making our approach valid and
reasonable.

Last, we show the time complexity performance of the
VNF placement algorithm, namely AaVS, as described in
Section V-A. In Fig. 9(c) we depict complexity results when
applied different VNF profile variance σ and VNF profile
instances I. Interestingly, high values of σ exacerbates the
growing rate of the complexity but still showing a sublinear
behavior, which in our test never exceeds 9 seconds. We can
conclude that AaVS is easily applied for realistic scenarios
where the number of VNF instances may dramatically grow.

E. z-TORCH: advantages and limitations

Due to the lack of existing solutions addressing jointly
both optimal placement (Quality-of-Decisions) and monitoring
load minimization, we compare the performance of z-TORCH
against a legacy approach, wherein optimal VNF placement
decisions are taken every decisional time without exploiting
machine-learning solutions. We call this benchmark as Instant
Placement. Additionally, to evaluate the goodness of our
solution, we develop an optimal VNF placement solution,
namely Optimum. This solution possesses a God-knowledge of
the future VNF profile deviations. Therefore, it can calculate
the optimal VNF placement (for each decisional time) in order
to minimize the overall VNF migrations in the future. We
denote the performance difference between our approach and
the optimal one as Regret, following the online decisional
algorithms terminology.

We evaluate our approach in terms of Quality-of-Decisions
(QoD) assuming that the Optimum policy takes the best
decision, i.e., QoD = 1. We use then the number of migrations
performed by the optimal policy as benchmark, and we calcu-
late the number of VNF migrations exceeding the benchmark.
Resulting QoD is the ratio between the optimal number of
migrations and the number of migrations required by each
solution. In Fig. 10(a), we show the QoD results while varying
the VNF profile variance σ for two different scenarios with
500 and 1000 VNF profile instances. Interestingly, when the
variance is very low, i.e., VNF profiles are predictable and
stable, the Instant Placement solution slightly outperforms z-
TORCH. This is due to the initial training phase in which z-
TORCH needs to adapt and stabilize. When the VNF profile
variance increases, z-TORCH shows a near-optimal results
(up to 88.6%) almost doubling the performance of the Instant
Placement solution.

Last, we show the monitoring load analysis when z-TORCH
is in place. In this case we only compare against the In-
stant Placement, as the optimum solution is executed only
once. Instant Placement can be considered as the worst case
since it needs monitoring information every sample point (δ).
Therefore, we normalize the number of monitoring messages
needed by z-TORCH by the ones needed by the Instant
Placement solution. Results are depicted in Fig. 10(b). The
larger the variability of VNF profiles increases, the higher
the monitoring load. This is due to a number of VNF profile

SUBMITTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 12

0.4 0.6 0.8 1 1.2
VNF Profile Variance ()

0

0.2

0.4

0.6

0.8

1

Q
ua

lit
y

of
 D

ec
is

io
ns

Optimum
z-TORCH (I=1000)
Instant Placement (I=1000)
z-TORCH (I=500)
Instant Placement (I=500)

Regret

(a) Quality-of-Decisions

0.4 0.6 0.8 1 1.2
VNF Profile Variance ()

0

0.2

0.4

0.6

0.8

1

M
on

ito
rin

g
Lo

ad

z-TORCH (I=1000)
z-TORCH (I=500)

Instant Placement

(b) Monitoring Load

Fig. 10. z-TORCH: Placement and monitoring performance.

deviations, which must be controlled through more monitoring
information. However, the monitoring load seems to stabilize
around 50 − 60% even for significant variance values σ.

This confirms that z-TORCH outperforms legacy solutions
while showing near-optimal performance at low monitoring
costs. Nonetheless, considered solutions (Instant Placement
and Optimum) requires a huge complexity making them not
suitable for being executed in an affordable time.

VIII. DEPLOYMENT CONSIDERATIONS

In this section, we will provide insights at various de-
ployment and implementation considerations of our proposed
method with respect to standard ETSI NFV MANO system
[5] and open source MANO projects like Open Network
Automation Platform (ONAP) [31] and Open Source MANO
(OSM) [32].

The ETSI NFV MANO system,, which is a standard CMS
for NFV based environment, is composed of three main
functional blocks namely the Virtualized Infrastructure Man-
ager (VIM), VNF Manager (VNFM) and NFV Orchestrator
(NFVO). The ETSI NFV MANO system is designed to man-
age and orchestrate virtualized resources in an NFV Infras-
tructure (NFVI) such as virtualized compute, network, storage,
memory etc via the VIM. It also manages the individual VNFs
that are deployed over the NFVI via the VNFM. The NFVO is
designed to perform resource orchestration and service orches-
tration, where the service meant here is the Network Service
(NS) that is formed by the concatenation of multiple relevant
VNFs to provide a composite network service. In other words
the VIM, VNFM and NFVO constitute the CMS. There are

VNF VNF VNF

OSS/BSS

NFVO

VNFM

VIM

EM

NFVI

NFV MANO

Ve-Vnfm-em

Ve-Vnfm-vnf

Nf-Vi

Or-Vi

Vn-Nf
Vi-Vnfm

Or-Vnfm

Os-Ma-nfvo

Execution Reference Points Other Reference Points Main NFV Reference Points

Monitoring Server
Primary (MS-P)

Monitoring Server
Secondary (MS-S)

Monitoring Server
Secondary (MS-S)

MC

MC

MC

Fig. 11. NFV MANO system with integrated monitoring system (Distributed).

no specific proposals as to how the monitoring system will
be integrated in the NFV MANO system. It is implied that
the VIM, VNFM and the NFVO will monitor their respective
layers for performance and fault management and take relevant
LCM decisions as per the logic local to the respective func-
tional block. There is also a requirement to monitor the MANO
functional blocks for its own performance/fault management
and that there is indeed a requirement to have a monitoring
entity i.e., MANO Monitor, with which all the three MANO
functional elements will interact with [33]. However, there is
no specific architectural proposal. In view of the prevailing
understanding, there are thus two layers of monitoring for
performance/fault management; Layer1 is for the monitoring
of the virtualized infrastructure and resources, while Layer2 is
for the monitoring of the MANO functional blocks themselves.
In this regard we propose two possible deployment options
for integrating a monitoring system within the ETSI NFV
MANO framework that can then be leveraged by the proposed
z-TORCH method.

A. Deployment Option 1

This option is illustrated in Fig. 11, where the MS is inte-
grated within each MANO functional blocks while the MCs
are deployed within the virtualized infrastructure/resources.
As explained above, the MC will be configurable by the
MS. The key difference is that due to the distribution of the
MS inside the MANO functional blocks, the MS within the
NFVO is the Primary MS (MSP), while the MS inside the
VIM and VNFM are the Secondary MS (MSS). The MSSs
can independently monitor, collect, analyze data from the
functional block respective layer. For example, the MSS within
the VNFM will be able to deploy and configure MC instances
inside the VNF instance(s) and will also independently collect
and locally analyze monitored data from these MCs. Based
on the analysis of the monitored data, the VNFM can take
VNF specific LCM decisions as per the policy/decision logic
local to the VNFM. Similarly the MS-S inside the VIM
will deploy and configure MC within the virtualized/non-
virtualized infrastructure resources (e.g., compute, network,

SUBMITTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 13

VNF VNF VNF

OSS/BSS NFVO

VNFM

VIM

EM

NFVI

NFV MANO

Ve-Vnfm-em

Ve-Vnfm-vnf

Nf-Vi

Or-Vi

Vn-Nf
Vi-Vnfm

Or-Vnfm

Os-Ma-nfvo

Execution Reference Points Other Reference Points

Main NFV Reference Points

Monitoring Server
Secondary (MS-S)

Monitoring Server
Secondary (MS-S)

MC

MC

MC

Monitoring
Server Primary

(MS-P)

Proposed Reference Points

Fig. 12. NFV MANO system with integrated monitoring system (Centralized).

memory, storage) and monitor and manage them as per its
local policy/decision logic. However, the LCM decisions taken
by the VIM and/or VNFM must be validated by the NFVO as
the latter has an overview of the overall NS that is composed
of several VNFs managed by possibly different VNFMs and
deployed over possibly different VIM platforms.

Owing to the level and centrality of the NFVO in the LCM
decision process; the MS-P is integrated within NFVO. The
MS-P does not deploy/configure/monitor any specific MCs but
it monitors and configures the MS-S instances in VNFM and
VIM. The MS-P may override any configuration parameter
within the MS-S instances at any time. Our proposed method
shall typically run inside MSP and based on the feedback it
receives from MS-S will (re)compute and (re)adjust the values
of ω and/or δ and/or t for the specific MSS instances. Based
on these values, the MSS will (re)configure the MC instances
within their respective monitoring domain. The MSP will also
configure the MS-S with the KPIs to monitor and can change
the configuration parameters of the MS-S any time. The MS-
P, based on the inputs received from the MSS will forward
them to the analysis engine (AE). The AE after analyzing
the data send the results to the decision engine which will
take appropriate decision on LCM, recompute the necessary
configuration parameters for the MSS instances and push them
over the respective standard reference points i.e., OrVi and
OrVNFM reference points. Please note that the AE and DE
components and their inter-relationship with themselves and
the MSP is similar to what is shown in Fig. 2.Our proposed
method can either run in the MS-P or the AE and the AE
then provide the recommended configurations parameters to
the MS-S.

B. Deployment Option 2

This option is depicted in Fig. 12. In this deployment, the
MS-P is a central entity that interacts with the MS-S located
in VNFM and VIM functional blocks. The NFVO does not
carry a MS-S as it will interact with the external MS-P. The
method described here is implemented in MS-P that will then
be used to compute the relevant configuration parameters for

the MS-C, which in turn will configure the MCs of their
respective domains. In this case the NFVO, which carries the
AE and the DE (see Fig. 2) will inform the MS-P of its LCM
decision and also the identities of the VNFs and NSs that has
been affected, and based on this information the MS-P will
(re)calculate the relevant configuration parameters and push
then to the MS-Ss so that they can configure the MCs within
their respective layer. It is also possible that the MS-P may
derive separate configuration values for the MS-S. This will
make the MC at the NFVI and VNF level to use different
monitoring configuration.

In addition to the above two proposed deployment options,
it is worth mentioning that there are open source MANO
projects like ONAP and OSM that are in various stages
of development. Having a credible monitoring system for
data collection is integral to the design of these frameworks.
For example, OSM has a Monitoring Module (MON) which
interfaces with 3rd party monitoring systems, and is used for
pushing monitoring configuration updates to external mon-
itoring systems while steering a limited set of actionable
evens into the Service Orchestrator [32]. ONAP on the other
hand has a more elaborate design for this purpose. In ONAP
framework, there is a dedicated DCAE platform that consists
of several functional components like, Collection Framework,
Data Movement, Storage Lakes, Analytic Framework, and
Analytic Applications [34]. The Collection Framework within
the DCAE enables the collection of various types of data
such as, event data for monitoring the health of the man-
aged environment, data to compute the key performance and
capacity indicators necessary for elastic management of the
resources, and granular data needed for detecting network and
service conditions [34]. The collected data is then processed
by the Analytic Framework for anomaly detection, capacity
monitoring, congestion monitoring, or alarm correlation etc.
The Analytics Framework also enables agile development
of analytic applications, and from this perspective is more
suitable for the implementation of z-TORCH method. This
is the next step, where we are evaluating the features and
capabilities of the DCAE platform for testing and evaluating
z-TORCH in a real test environment.

IX. CONCLUSIONS

In this work, we have designed an automated solution,
namely z-TORCH, performing joint NFV orchestration and
monitoring re-configuration operations without requiring hu-
man intervention. We have built our solution based on
machine-learning approaches. In particular, we have proposed
an unsupervised binding affinity solution to study and profile
VNF KPIs. This has allowed us to proactively place VNFs
into compute nodes pursuing the Quality-of-Decisions (QoD)
maximization and, in turn, the decisional complexity mini-
mization. In addition, z-TORCH automatically adapts the VNF
monitoring load according to VNF profile time variations.

The main characteristics of our proposed z-TORCH solu-
tions can be summarized as follows: i) an unsupervised system
in charge of profiling VNF KPIs based on previous monitoring
information, ii) a proactive VNF placement based on pre-
calculated affinity groups, iii) an adaptive monitoring load

SUBMITTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 14

control to minimize the overhead of monitoring information.
NP-Hardness proofs and heuristics algorithms are introduced
to make our framework practical and implementable. An
exhaustive simulation campaign is carried out to validate our
solution against a legacy system showing that z-TORCH can
achieve near-optimal results at very limited monitoring costs.

As a next step, we will evaluate the features and capabilities
of open source MANO projects like ONAP for testing and
evaluating z-TORCH in a real test environment.

X. ACKNOWLEDGMENTS

This work has received funding from the European Unions
Horizon 2020 research and innovation programme under grant
agreement No 761536 (5G-Transformer project).

REFERENCES

[1] M. Kutare, G. Eisenhauer, C. Wang, K. Schwan, V. Talwar, and M. Wolf,
“Monalytics: Online monitoring and analytics for managing large scale
data centers,” in Proceedings of the 7th International Conference on
Autonomic Computing, ser. ICAC ’10. ACM, 2010, pp. 141–150.

[2] F. Z. Yousaf, P. Loureiro, F. Zdarsky, T. Taleb, and M. Liebsch, “Cost
analysis of initial deployment strategies for virtualized mobile core
network functions,” IEEE Communications Magazine, vol. 53, no. 12,
pp. 60–66, Dec 2015.

[3] F. Z. Yousaf, C. Goncalves, and L. Moreira-Matias, “RAVA Resource
aware VNF agnostic NFV orchestration method for virtualized net-
works,” in IEEE 27th Annual International Symposium on Personal,
Indoor, and Mobile Radio Communications (PIMRC). IEEE, 2016.

[4] ETSI NFV ISG, “GR NFV-IFA 022 V0.7.1: Network Function Virtual-
isation (NFV); Management and Orchestration;Report on Management
and Connectivity for Multi-Site Services,” 2017.

[5] ——, “GS NFV-MAN 001 V1.1.1 Network Function Virtualisation
(NFV); Management and Orchestration,” Dec. 2014.

[6] H. Huang and L. Wang, “P&P: a combined push-pull model for
resource monitoring in cloud computing environment,” in 2010 IEEE
3rd International Conference on Cloud Computing, July, pp. 260–267.

[7] Y.-A. L. Borgne, S. Santini, and G. Bontempi, “Adaptive model se-
lection for time series prediction in wireless sensor networks,” Signal
Processing, vol. 87, no. 12, pp. 3010–3020, 2007.

[8] H. Malik, A. S. Malik, and C. K. Roy, “A methodology to optimize query
in wireless sensor networks using historical data,” Journal of Ambient
Intelligence and Humanized Computing, vol. 2, pp. 227–238, 2011.

[9] G. M. Dias, T. Adame, B. Bellalta, and S. Oechsner, “A self-managed
architecture for sensor networks based on real time data analysis,” in
2016 Future Technologies Conference (FTC), Dec 2016, pp. 1297–1299.

[10] G. M. Dias, M. Nurchis, and B. Bellalta, “Adapting sampling interval of
sensor networks using on-line reinforcement learning,” in 2016 IEEE 3rd
World Forum on Internet of Things (WF-IoT), Dec 2016, pp. 460–465.

[11] T. Taleb, M. Bagaa, and A. Ksentini, “User mobility-aware virtual
network function placement for virtual 5G network infrastructure,” in
2015 IEEE International Conference on Communications (ICC), 2015.

[12] Q. Sun, P. Lu, W. Lu, and Z. Zhu, “Forecast-assisted NFV service chain
deployment based on affiliation-aware vNF placement,” in 2016 IEEE
Global Communications Conference (GLOBECOM), Dec, pp. 1–6.

[13] M. Ghaznavi, A. Khan, N. Shahriar, K. Alsubhi, R. Ahmed, and
R. Boutaba, “Elastic virtual network function placement,” in 2015 IEEE
4th International Conference on Cloud Networking (CloudNet), Oct
2015, pp. 255–260.

[14] F. Carpio, S. Dhahri, and A. Jukan, “VNF placement with replication
for load balancing in NFV networks,” in 2017 IEEE International
Conference on Communications (ICC), May 2017.

[15] R. Riggio, T. Rasheed, and R. Narayanan, “Virtual network functions or-
chestration in enterprise wlans,” in IFIP/IEEE International Symposium
on Integrated Network Management, May 2015, pp. 1220–1225.

[16] P. A. Frangoudis, L. Yala, A. Ksentini, and T. Taleb, “An architecture
for on-demand service deployment over a telco cdn,” in 2016 IEEE
International Conference on Communications (ICC), May, pp. 1–6.

[17] F. Z. Yousaf and T. Taleb, “Fine-grained resource-aware virtual network
function management for 5G carrier cloud,” IEEE Network, vol. 30,
no. 2, pp. 110–115, March 2016.

[18] V. Sciancalepore, F. Giust, K. Samdanis, and Z. Yousaf, “A double-
tier MEC-NFV architecture: Design and optimisation,” in 2016 IEEE
Conference on Standards for Communications and Networking (CSCN).

[19] “Zabbix - The Enterprise Class Monitoring Platform,”
http://www.zabbix.com, 2017.

[20] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. New York, NY, USA: W. H.
Freeman & Co., 1979.

[21] M. Inaba, N. Katoh, and H. Imai, “Applications of weighted voronoi
diagrams and randomization to variance-based k-clustering: (extended
abstract),” in Proceedings of the Tenth Annual Symposium on Compu-
tational Geometry, ser. SCG ’94. ACM, pp. 332–339.

[22] V. Birodkar and D. R. Edla, “Enhanced k-means clustering algorithm
using a heuristic approach,” in Journal of Information and Computing
Science, vol. 9, no. 4, 2014, pp. 277–284.

[23] D. Arthur and S. Vassilvitskii, “How slow is the k-means method?” in
Proceedings of the Twenty-second Annual Symposium on Computational
Geometry, ser. SCG ’06. ACM, 2006, pp. 144–153.

[24] T. Shia, J. Wangb, P. Wanga, and S. Yuea, “Application of grid-based
k-means clustering algorithm for optimal image processing,” Computer
Science and Information Systems, vol. 9, pp. 1679–1696, Dec. 2012.

[25] H. Kellerer and U. Pferschy, “A new fully polynomial time approxi-
mation scheme for the knapsack problem,” Journal of Combinatorial
Optimization, vol. 3, pp. 59–71, 1999.

[26] IBM ILOG CPLEX Optimization Studio. https://www.ibm.com/us-en/
marketplace/ibm-ilog-cplex/.

[27] G. Dósa, R. Li, X. Han, and Z. Tuza, “Tight absolute bound for first fit
decreasing bin-packing: FFD(L)≤11/9opt(l)+6/9,” Theor. Comput. Sci.,
vol. 510, pp. 13–61, Oct. 2013.

[28] C. J. C. H. Watkins and P. Dayan, “Q-learning,” in Machine Learning,
1992, pp. 279–292.

[29] NEC LTE small-cell MB4420. http://www.nec.com/en/global/solutions/
nsp/sc2/prod/e-nodeb.html.

[30] OpenEPC 6. http://www.openepc.com/.
[31] Open Network Automation Platform (ONAP) Project. https://www.onap.

org/.
[32] Open Source MANO (OSM) Project. https://osm.etsi.org/.
[33] ETSI NFV ISG, “GR NFV-IFA 021 V0.9.0: Network Function Virtuali-

sation (NFV); Management and Orchestration;Report on management
of NFV-MANO and automated deployment of EM and other OSS
functions,” 2017.

[34] Open Network Automation Platform (ONAP) Project: DCAE Plat-
form Architecture. https://wiki.onap.org/pages/viewpage.action?pageId=
1015831.

Vincenzo Sciancalepore (S’11-M’15) is a 5G
Senior Researcher at NEC Laboratories Europe
GmbH., Germany. He is currently focusing his activ-
ity in the area of network virtualization and network
slicing challenges. He is currently involved in the
IEEE Emerging Technologies Committee leading
the initiatives on SDN and NFV. He was also the
recipient of the national award for the best Ph.D.
thesis in the area of communication technologies
(Wireless and Networking) issued by GTTI in 2015.

Faqir Zarrar Yousaf (M’09) is a Senior Researcher
at NEC Laboratories Europe in Heidelberg, Ger-
many. His current research interest is focused around
NFV/SDN related technologies in the context of 5G
networks. He is also a delegate at the ETSI NFV
standards organization, where he is a Rapporteur
for four work items and has contributed to several
standards. He has filed 13 patents while his research
work has been widely published.

Xavier Costa-Perez (S’01-M’05) is head of 5G Net-
works R&D at NEC Laboratories Europe, where he
manages several projects focused on 5G mobile core,
backhaul/fronthaul, and radio access networks. The
5G Networks team contributes to projects for NEC
products roadmap evolution and to European Com-
mission research collaborative projects and related
standardization bodies. He received his M.Sc. and
Ph.D. in telecommunications from the Polytechnic
University of Catalonia (UPC-BarcelonaTech).

