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Abstract—It is now commonly agreed that future 5G Networks will build upon the network slicing concept. The ability to provide virtual,
logically independent “slices” of the network will also have an impact on the models that will sustain the business ecosystem. Network
slicing will open the door to new players: the infrastructure provider, which is the owner of the infrastructure, and the tenants, which
may acquire a network slice from the infrastructure provider to deliver a specific service to their customers. In this new context, how to
correctly handle resource allocation among tenants and how to maximize the monetization of the infrastructure become fundamental
problems that need to be solved. In this paper, we address this issue by designing a network slice admission control algorithm that
(i) autonomously learns the best acceptance policy while (ii) it ensures that the service guarantees provided to tenants are always
satisfied. The contributions of this paper include: (i) an analytical model for the admissibility region of a network slicing-capable 5G
Network, (ii) the analysis of the system (modeled as a Semi-Markov Decision Process) and the optimization of the infrastructure
providers revenue, and (iii) the design of a machine learning algorithm that can be deployed in practical settings and achieves close
to optimal performance.
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1 INTRODUCTION

T HE expectations that build around future 5G Networks are
very high, as the envisioned Key Performance Indicators

(KPIs) represent a giant leap when compared to the legacy
4G/LTE networks. Very high data rates, extensive coverage,
sub-ms delays are just few of the performance metrics that
5G networks are expected to boost when deployed.

This game changer relies on new technical enablers such
as Software-Defined Networking (SDN) or Network Function
Virtualization (NFV) that will bring the network architecture
from a purely hardbox based paradigm (e.g., a eNodeB or a
Packet Gateway) to a completely cloudified approach, in which
network functions that formerly were hardware-based (e.g.,
baseband processing, mobility management) are implemented
as software Virtual Network Functions (VNFs) running on a,
possibly hierarchical, general purpose telco-cloud.

Building on these enablers, several novel key concepts have
been proposed for next generation 5G networks [1]; out of
those, Network Slicing [2] is probably the most important
one. Indeed, there is a wide consensus in that accommodating
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the very diverse requirements demanded by 5G services using
the same infrastructure will not be possible with the current,
relatively monolithic architecture in a cost efficient way. In
contrast, with network slicing the infrastructure can be divided
in different slices, each of which can be tailored to meet
specific service requirements.

A network slice consists of a set of VNFs that run on a
virtual network infrastructure and provide a specific telecom-
munication service. The services provided are usually typified
in macro-categories, depending on the most important KPIs
they target. Enhanced Mobile Broadband (eMBB), massive
Machine Type Communication (mMTC) or Ultra Reliable Low
Latency Communication (URLLC) are the type of services
currently envisioned by, e.g., ITU [3]. Each of these services
is instantiated in a specific network slice, which has especially
tailored management and orchestration algorithms to perform
the lifecycle management within the slice.

In this way, heterogeneous services may be provided using
the same infrastructure, as different telecommunication ser-
vices (that are mapped to a specific slice) can be configured
independently according to their specific requirements. Addi-
tionally, the cloudification of the network allows for the cost-
efficient customization of network slices, as the slices run on
a shared infrastructure.

Network Slicing enables a new business model around
mobile networks, involving new entities and opening up new
business opportunities. The new model impacts all the players
of the mobile network ecosystem. For end-users, the capability
of supporting extreme network requirements [3] enables new
services that could not be satisfied with current technologies,
providing a quality of experience beyond that of todays
networks. For tenants such as service providers, network
slicing allows to tailor the network service to the specific
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needs of the service being provided, adjusting the slice’s
operation to the service provider’s needs. For mobile network
operators, network slicing allows to target new customers
with specific service requirements, such as industrial sectors
with stringent requirements, ultimately providing new revenue
streams coming from the new customers.

This business model underlying network slicing is the
Infrastructure as a Service (IaaS), which is expected to increase
the number of available revenue streams in 5G. This model
has already been successfully applied to the cloud computing
infrastructure by providers such as Amazon AWS or Microsoft
Azure. However, cloud computing platforms are selling to
customers (i.e., tenants) cloud resources (e.g., CPU, memory,
storage) only, while in a 5G Infrastructure market such as the
one enabled by network slicing, the traded goods also include
network resources (e.g., spectrum, transport network). This
entails a totally different problem due to the following reasons:
(i) spectrum is a scarce resource for which over-provisioning
is not possible, (ii) the actual capacity of the systems (i.e.,
the resources that can actually be sold) heavily depends
on the mobility patterns of the users, and (iii) the Service
Level Agreements (SLAs) with network slices tenants usually
impose stringent requirements on the Quality of Experience
(QoE) perceived by their users. Therefore, in contrast to IaaS,
in our case applying a strategy where all the requests coming to
the infrastructure provider are admitted is simply not possible.

The ultimate goal of InPs is to obtain the highest possible
profit from of the deployed infrastructure, thus maximizing
monetization. The design of a network slice admission control
policy that achieves such goal in this spectrum market is still
an open problem. More specifically, the network capacity bro-
ker algorithm that has to decide on whether to admit or reject
new network slice requests shall simultaneously satisfy two
different goals: (i) meeting the service guarantees requested by
the network slices admitted while (ii) maximizing the revenue
of a network infrastructure provider.

The goal of meeting the desired service guarantees needs
to consider radio related aspects, as a congested network will
likely not be able to meet the service required by a network
slice. Conversely, the goal of maximizing the revenue obtained
by the admission control should be met by applying an on-
demand algorithm that updates the policies as long as new
requests arrive.

In this paper, we propose a Machine Learning approach to
the 5G Infrastructure Market optimization. More specifically,
the contributions of this paper are: (i) we provide an analytical
model for the admissibility region in a sliced network, that
provide formal service guarantees to network slices, and
(ii) we design an online Machine Learning based admission
control algorithm that maximizes the monetization of the
infrastructure provider.

Machine learning is the natural tool to address such a
complex problem. As discussed in detail along the paper,
this problem is highly dimensional (growing linearly with the
number of network slices classes) with a potentially huge
number of states (increasing exponentially with the number of
classes) and many variables (one for each state). Furthermore,
in many cases the behavior of the tenants that request slices is

not known a priori and may vary with time. For these reasons,
traditional solutions building on optimization techniques are
not affordable (because of complexity reasons) or simply im-
possible (when slice behavior is not known). Instead, machine
learning provides a mean to cope with such complex problems
while learning the slice behavior on the fly, and thus allows
to develop a practical approach to deal with such a complex
and potentially unknown system.

The rest of the paper is structured at follows. In Section 2
we review the relevant works related to this paper in the
fields of resource allocation for network slicing aware net-
works, network slice admission control and machine learning
applied to 5G Networks. In Section 3 we describe our System
Model, while the analytical formulation for the network slice
admissibility region is provided in Section 4. In Section 5 we
model the decision-making process by means of a Markovian
analysis, and derive the optimal policy which we use as
a benchmark. In Section 6 we present a Neural Networks
approach based on deep reinforcement learning, which pro-
vides a practical and scalable solution with close to optimal
performance. Finally, in Section 7 we evaluate the proposed
algorithm in a number of scenarios to assess its performance
in terms of optimality, scalability and adaptability to different
conditions, before concluding the paper in Section 8.

2 STATE OF THE ART

While the network slicing concept has only been proposed
recently [2], it has already attracted substantial attention. 3GPP
has started working on the definition of requirements for
network slicing and the design of a novel network architecture
for supporting it [4], whereas the Next Generation Mobile
Networks Alliance (NGMN) identified network sharing among
slices (the focus of this paper) as one of the key issues to
be addressed [5]. While there is a body of work on the
literature on spectrum sharing [6]–[9], these proposal are not
tailored to the specific requirements of the 5G ecosystem.
Conversely, most of the work has focused on architectural
aspects [10], [11] with only a limited focus on resource
allocation algorithms. In [12], the authors provide an analysis
of network slicing admission control and propose a learning
algorithm; however, the proposed algorithm relies on an offline
approach, which is not suitable for a continuously varying
environment such as the 5G Infrastructure market. Moreover,
the aim is to maximize the overall network utilization, in
contrast to our goal here which is focused on maximizing InP
revenues.

The need for new algorithms that specifically targets the
monetization of the network has been identified in [13].
However, there are still very few works on this topic. The work
in [14] analyzes the problem from an economical perspective,
proposing a revenue model for the InP. The authors of [15]
build an economic model that describes the Mobile Network
Operator (MNO) profit when dealing with the network slice
admission control problem, and propose a decision strategy to
maximize the expected overall network profit. The proposed
approach, however, is not on demand and requires the full
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knowledge of arriving requests statistics, thus making it im-
practicable in real scenarios. Another work in this field is the
one of [14], with similar limitations.

Learning algorithms are in the spotlight since Mnith et
al. [16] designed a deep learning algorithm called “deep Q-
network” to deal with Atari games, and further improved
it in [17] making the algorithm able to learn successful
policies directly from high-dimensional sensory inputs and
reach human-levels performance in most of Atari games.
Another approach is “AlphaGo”, which builds on deep neural
networks to play with the “Go” game [18]. Many more
algorithms have been proposed [19]–[23], which are mostly
applied in games, robotics, natural language processing, image
recognition problems.

The application of Reinforcement and Machine learning
approaches to mobile networks is also gaining popularity. To
name a few examples, the work in [24] proposes a Q-learning
algorithm for improving the reliability of a millimeter wave
(mmW) non-line-of-sight small cell backhaul system, while
in [25] Q-learning is implemented to solve the adaptive call
admission control problem.

Machine learning has been applied to a wide span of
applications in 5G networks, ranging from channel estima-
tion/detection for massive MIMO channel to user behav-
ior analysis, location prediction or intrusion/anomaly detec-
tion [26]. For instance, decision tree and information-theoretic
regression models have been used in [27] in order to identify
radio access networks problems. The authors of [28] em-
ploy a deep learning approach for modulation classification,
which achieves competitive accuracy with respect to traditional
schemes. The authors of [29] apply deep neural networks
to approximate optimization algorithm for wireless networks
resources management.

This work is an extension of the paper in [30]. In that
paper, the problem of slice admission control for revenue
maximization was addressed by employing Q-learning. While
this provides the ability to adapt to changing environments
while achieving close to optimal performance, an inherent
drawback of Q-learning is its lack of scalability, as the learning
time grows excessively when the state space becomes too
large. In contrast, the algorithm proposed in this paper is based
on Neural Networks, and it is shown to scale with the size of
the network, quickly converging to optimal performance.

To the best of our knowledge, the work presented in this
paper along with the previous version in [30] are the first
ones that build on Machine Learning to address the problem
of admission control for a 5G Infrastructure Market, with the
aim of maximizing the InP’s revenue while guaranteeing the
SLAs of the admitted slices.

3 SYSTEM MODEL

As discussed in Section 1, 5G networks necessarily introduce
changes in the applied business models. With the legacy
and rather monolithic network architecture, the main service
offered is a generic voice and best-effort mobile broadband.
Conversely, the high customizability that 5G Networks intro-
duce will enable a richer ecosystem on both the portfolio of

available services and the possible business relationships. New
players are expected to join the 5G market, leading to an
ecosystem that is composed of (i) users that are subscribed
to a given service provided by a (ii) tenant that, in turn,
uses the resources (i.e., cloud, spectrum) provided by an (iii)
infrastructure provider.1 In the remainder of the paper we use
this high level business model as basis for our analysis. In the
following, we describe in details the various aspects related to
our system model.
Players. As mentioned before, in our system model there are
the following players: (i) the Infrastructure Provider, InP,
who is the owner of the network (including the antenna
location and cloud infrastructure) and provides the tenants
with network slices corresponding to a certain fraction of
network resources, (ii) the tenants, which issue requests to
the infrastructure provider to acquire network resources, and
use these resources to serve their users, providing them a
specific telecommunication service, and finally (iii) the end-
users, which are subscribers of the service provided by a tenant
which uses the resources of the infrastructure provider.
Network model. The ecosystem described above does not
make any distinction on the kind of resources an InP may
provide to the tenants. From the various types of resources,
spectrum will typically be the most important factor when
taking a decision on whether to accept a request from a
tenant. Indeed, cloud resources are easier to provision, while
increasing the spectrum capacity is more complex and more
expensive (involving an increase on antenna densification).
Based on this, in this paper we focus on the wireless access
network as the most limiting factor. In our model of the
wireless access, the network has a set of base stations B owned
by an infrastructure provider. For each base station b ∈ B, we
let Cb denote the base station capacity. We further refer to
the system capacity as the sum of the capacity of all base
stations, C =

∑
B Cb. We let U denote the set of users in the

network.2 We consider that each user u ∈ U in the system
is associated to one base station b ∈ B. We denote by fub
the fraction of the resources of base station b assigned to
user u, leading to a throughput for user u of ru = fubCb.
We also assume that users are distributed among base stations
according to a given probability distribution; we denote by
Pu,b the probability that user u is associated with base station
b. We assume that these are independent probabilities, i.e.,
each user behaves independently from the others.
Traffic model. 5G Networks provide diverse services which
are mapped to three different usage scenarios or slice cat-
egories: eMBB, mMTC and URLLC [3]. As the main bot-
tleneck from a resource infrastructure market point of view
is spectrum, different slice categories need to be matched
based to their requirements in terms of the spectrum usage.
For instance eMBB-alike slices have a higher flexibility with
respect to resource usage, and can use the leftover capacity of
URLLC services which have more stringent requirements on

1. While some of these roles may be further divided into more refined
ones, as suggested in [31], the ecosystem adopted in this paper reflects a
large consensus on the current view of 5G networks.

2. The users of the network are the end-users we referred to above, each
of them being served by one of the tenants.
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the needed capacity.
Following the above, in this paper we focus on elastic

and inelastic traffic as it is the main distinguishing factor
for spectrum usage and thus provides a fairly large level of
generality. In line with previous work in the literature [32], we
consider that inelastic users require a certain fixed throughput
demand which needs to be satisfied at all times,3 in contrast
to elastic users which only need guarantees on the average
throughput, requiring that the expected average throughput
over long time scales is above a certain threshold. That is,
for inelastic users throughput needs to be always (or with
a very high probability) above the guaranteed rate, while
the throughput for elastic users is allowed to fall below the
guaranteed rate during some periods as long as the average
stays above this value.

We let I denote the set of classes of inelastic users; each
class i ∈ I has a different rate guarantee Ri which needs to be
satisfied with a very high probability; we refer the probability
that this rate is not met as the outage probability, and impose
that it cannot exceed P̄out, which is set to a very small value.
We further let Ni denote the number of inelastic users of class
i ∈ I, and Pi,b be the probability that a user of class i is at
base station b. Finally, we let Ne be the number of elastic
users in the network and Re their average rate guarantee.

At any given point in time, the resources of each base
stations are distributed among associated users as follows:
inelastic users u ∈ I are provided sufficient resources to
guarantee ru = Ri, while the remaining resources are equally
shared among the elastic users. In case there are not sufficient
resources to satisfy the requirements of inelastic users, even
when leaving elastic users with no throughput, we reject
as many inelastic users as needed to satisfy the required
throughput guarantees of the remaining ones.

Note that the above traffic types are well aligned with the
slice categories defined in 3GPP, as the elastic traffic behavior
is in line with the eMBB and mMTC services, while inelastic
behavior matches the requirements of URLCC services.
Network slice model. By applying the network slicing concept
discussed in Section 1, the network is divided into different
logical slices, each of them belonging to one tenant. Thus, we
characterize a network slice by (i) its traffic type (elastic or
inelastic), and (ii) its number of users (i.e., the subscribers of
a given service) that have to be served.

A network slice comes with certain guarantees provided by
an SLA agreement between the tenant and the infrastructure
provider. In our model, a tenant requests a network slice that
comprises a certain number of users and a traffic type. Then,
as long as the number of users belonging to a network slice
is less or equal than the one included in the SLA agreement,
each of them will be provided with the service guarantees
corresponding to their traffic type.

A network slice may be limited to a certain geographical
area, in which case the corresponding guarantees only apply

3. Note that, by ensuring that the instantaneous throughput of inelastic traf-
fic stays above a certain threshold, it is possible to provide delay guarantees.
Indeed, as long as the traffic generated by inelastic users is not excessive, by
providing a committed instantaneous throughput we can ensure that queuing
delays are sufficiently low.

to the users residing in the region. In our model, we focus on
the general case and consider network slices that span over the
entire network. However, the model could be easily extended
to consider restricted geographical areas.

Following state of the art approaches [11], network slicing
onboarding is an automated process that involves little or no
human interaction between the infrastructure provider. Based
on these approaches, we consider a bidding system in order
to dynamically allocate network slices to tenants. With this,
tenants submit requests for network slices (i.e., a certain
number of users of a given service) to the infrastructure
provider, which accepts or rejects the request according to
an admission control algorithm such as the one we propose in
this paper. To that aim, we characterize slices request by:

• Network slice duration t: this is the length of the time
interval for which the network slice is requested.

• Traffic type κ: according to the traffic model above, the
traffic type of a slice can either be elastic or inelastic
traffic.

• Network slice size N : the size of the network slice
is given by the number of users it should be able to
accommodate.

• Price ρ: the cost a tenant has to pay for acquiring
resources for a network slice. The price is per time
unit, and hence the total revenue obtained by accepting a
network slice is given by r = ρt.

Following the above characterization, an infrastructure
provider will have catalogs of network slice blueprinted by
predefined values for the tuple {κ,N, ρ}, which we refer to
as network slice classes. Tenants issue requests for one of
the slice classes available in the catalogue, indicating the total
duration t of the network slice. When receiving a request,
an infrastructure provider has two possible decisions: it can
reject the network slice and the associate revenue to keep the
resources free or it can accept the network slice and charge the
tenant r dollars. If accepted, the infrastructure provider grants
resources to a tenant during a t-window.

To compute the profit received by the tenant, we count the
aggregated revenue resulting from all the admitted slices. This
reflects the net benefit of the InP as long as (i) the costs of
the InP are fixed, or (ii) they are proportional to the network
utilization (in the latter case, ρ reflects the difference between
the revenue and cost of instantiating a slice). We argue that
this covers a wide range of cases of practical interest such as
spectrum resources or computational ones. Moreover, in the
cases where costs are not linear with the network usage, our
analysis and algorithm could be extended to deal with such
cases by subtracting the cost at a given state from the revenue.

4 BOUNDING THE ADMISSIBILITY REGION

An online admission control algorithm has to decide whether
to accept or reject a new incoming network slice request issued
by a tenant. Such a decision is driven by a number of variables
such as the expected income and the resources available. The
objective of an admission control algorithm is to maximize
the overall profit while guaranteeing the SLA committed to
all tenants. A fundamental component of such an algorithm is
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the admissibility region, i.e., the maximum number of network
slices that can be admitted in the system while guaranteeing
that the SLAs are met for all tenants. Indeed, if admitting a
new network slice in the system would lead to violating the
SLA of already admitted slices, then such a request should be
rejected. In the following, we provide an analysis to determine
the admissibility region, denoted by A, as a first step towards
the design of the optimal admission algorithm.

4.1 Admissibility region analysis
We say that a given combination of inelastic users of the
various classes and elastic users belongs to the admissibility
region, i.e., {N1, . . . , N|I|, Ne} ∈ A, when the guarantees
described in the previous section for elastic and inelastic traffic
are satisfied for this combination of users. In the following,
we compute the admissibility region A.

In order to determine whether a given combination of
users of different types, {N1, . . . , N|I|, Ne}, belongs to A, we
proceed as follows. We first compute the outage probability
for an inelastic user of class i ∈ I, Pout,i. Let Rb be the
throughput consumed by the inelastic users at b. The average
value of Rb can be computed as

E[Rb] =
∑
j∈I

NjPj,bRj , (1)

and the typical deviation as

σ2
b =

∑
j∈I

Njσ
2
j,b, (2)

where σ2
j,b is the variance of the throughput consumed by one

inelastic user of class j, which is given by

σ2
j,b = Pj,b(Rj − Pj,bRj)

2 + (1− Pj,b)(Pj,bRj)
2

= Pj,b(1− Pj,b)R
2
j . (3)

Our key assumption is to approximate the distribution of
the committed throughput at base station b by a normal
distribution of mean Rb and variance σ2

b , i.e., N (E[Rb], σ
2
b ).

Note that, according to [33], this approximation is appropriate
as long as the number of users per base station in the boundary
of the admissibility region is no lower than 5, which is
generally satisfied by cellular networks (even in the extreme
case of small cells).

The outage probability at base station b is given by the
probability that the committed throughput exceeds the base
station capacity, i.e.,

Pout,b = P(Rb > Cb), (4)

where Cb be the capacity of base station b.
To compute the above probability with the normal approx-

imation, we proceed as follows:

Pout,b ≈ 1− Φ

(
Cb + C̃b − E[Rb,i]

σb,i

)
, (5)

where Φ(·) is the cumulative distribution function of the
standard normal distribution and C̃b is a continuity correction
factor that accounts for the fact Rb is not a continuous

variable. In line with [34], where this is applied to a binomial
distribution and the correction factor is one half of the step
size, in our case we a set the continuity correction factor as
one half of the average step size, which yields

C̃b =
1

2

∑
j∈I Pj,bNjRj∑
j∈I Pj,bNj

. (6)

Once we have obtained Pout,b, we compute the outage
probability of an inelastic user of class i with the following
expression:

Pout,i =
∑
b∈B

Pi,bPout,b. (7)

Next, we compute the average throughput of an elastic user.
To this end, we assume that (i) in line with [32], elastic users
consume all the capacity left over by inelastic traffic, (ii) there
is always at least one elastic user in each base station, and (iii)
all elastic users receive the same throughput on average.

With the above assumptions, we proceed as follows. The
average committed throughput consumed by inelastic users at
base station b is given by

E[Rb] =
∑
i∈I

NiPi,bRi, (8)

which gives an average capacity left over by inelastic users
equal to Cb − E[Rb]. This capacity is entirely used by elastic
users as long as the base station is not empty. The total
capacity usage by elastic users is then given by the sum of
this term over all base stations. As this capacity is equally
shared (on average) among all elastic users, this leads to the
following expression for the average throughput of an elastic
user:

re =

∑
b∈B Cb − E[Rb]

Ne
. (9)

Based on the above, we compute the admissibility region A
as follows. For a given number of inelastic users in each class,
Ni, i ∈ I, and of elastic users, Ne, we compute the outage
probability of the inelastic classes, Pout,i, and the average
throughput of the elastic users, re. If the resulting values meet
the requirements for all classes, i.e., Pout,i ≤ P̄out ∀i and
re ≥ Re, then this point belongs to the admissibility region,
and otherwise it does not.

4.2 Validation of the admissibility region
In order to assess the accuracy of the above analysis, we
compare the admissibility region obtained theoretically against
the one resulting from simulations. To this end, we consider
the reference scenario recommended by ITU-T [35], which
consists of |B| = 19 base stations placed at a fixed distance
of 200m. Following the system model of Section 3, we have
elastic and inelastic users. All inelastic users belong to the
same class, and all users (elastic and inelastic) move in the
area covered by these base stations following the Random
Waypoint (RWP) mobility model, with a speed uniformly
distributed between 2 and 3 m/s.

The association procedure of elastic and inelastic users with
base stations is as follows. Inelastic users try to associate to
the nearest base station b ∈ B, if it has at least Ri capacity left.
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Fig. 1: Admissibility region: analysis vs. simulation.

Otherwise they do not associate and generate an outage event,
joining again the network when their throughput guarantee
can be satisfied. When associating, they consume a capacity
Ri from the base station. The probability of association to
each base station (i.e., the Pi,b values) are extracted from the
simulations and fed into the analysis.

Similarly to inelastic users, elastic users always associate
to the nearest base station. All the elastic users associated to
a base station fairly share among them the capacity left over
by inelastic users. Upon any association event, the throughput
received by the users associated to the new and the old base
station changes accordingly.

Following the above procedure, we have simulated all the
possible combinations of inelastic and elastic users, {Ni, Ne}.
For each combination, we have evaluated the average through-
put received by elastic users, computed over samples of 10
seconds time windows, and the outage probability Pout of
inelastic users, computed as the fraction of time over which
they do not enjoy their guaranteed throughput. If these two
metrics (average elastic traffic throughput and inelastic traffic
outage probability) are within the guarantees defined for
the two traffic types, we place this combination inside the
admissibility region, and otherwise we place it outside.

Fig. 1 shows the boundaries of the admissibility region
obtained analytically and via simulation, respectively, for
different throughput guarantees for elastic and inelastic users
(A5 : Ri = Re = Cb/5, A10 : Ri = Re = Cb/10 and
A20 : Ri = Re = Cb/20) and P̄out = 0.01. We observe
that simulation results follow the analytical ones fairly closely.
While in some cases the analysis is slightly conservative in the
admission of inelastic users, this serves to ensure that inelastic
users’ requirements in terms of outage probability are always
met.

5 MARKOVIAN MODEL FOR THE DECISION-
MAKING PROCESS
While the admissibility region computed above provides the
maximum number of elastic and inelastic users that can
be admitted, an optimal admission algorithm that aims at
maximizing the revenue of the infrastructure provider may not
always admit all the requests that fall within the admissibility
region. Indeed, when the network is close to congestion,
admitting a request that provides a low revenue may prevent
the infrastructure provider from admitting a future request

with a higher revenue associated. Therefore, the infrastructure
provider may be better off by rejecting the first request with
the hope that a more profitable one will arrive in the future.

The above leads to the need for devising an admission
control strategy for incoming slice requests. Note that the
focus is on the admission of slices, in contrast to traditional
algorithms focusing on the admission of users; once a tenant
gets its slice admitted and instantiated, it can implement
whatever algorithm it considers more appropriate to admit
users into the slice.

In the following, we model the decision-making process on
slice requests as a Semi-Markov Decision Process (SMDP).4

The proposed model includes the definition of the state space
of the system, along with the decisions that can be taken
at each state and the resulting revenues. This is used as
follows: (i) to derive the optimal admission control policy
that maximizes the revenue of the infrastructure provider,
which serves as a benchmark for the performance evaluation
of Section 7, and (ii) to lay the basis of the machine learning
algorithm proposed in Section 6, which implicitly relies on
the states and decision space of the SMDP model.

5.1 Decision-making process analysis
SMDP is a widely used tool to model sequential decision-
making problems in stochastic systems such as the one con-
sidered in this paper, in which an agent (in our case the InP)
has to take decisions (in our case, whether to accept or reject a
network slice request) with the goal of maximizing the reward
or minimizing the penalty. For simplicity, we first model our
system for the case in which there are only two classes of
slice requests of fixed size N = 1, i.e., for one elastic user or
for one inelastic user. Later on, we will show how the model
can be extended to include an arbitrary set of network slice
requests of different sizes.

The Markov Decision Process theory [36] models a system
as: (i) a set of states s ∈ S, (ii) a set of actions a ∈ A,
(iii) a transition function P (s, a, s′), (iv) a time transition
function T (s, a), and (v) a reward function R (s, a). The
system is driven by events, which correspond to the arrival
of a request for an elastic or an inelastic slice as well as the
departure of a slice (without loss of generality, we assume
that arrivals and departures never happen simultaneously, and
treat each of them as a different event). At each event, the
system can be influenced by taking one of the possible actions
a ∈ A. According to the chosen actions, the system earns the
associated reward function R (s, a), the next state is decided
by P (s, a, s′) while the transition time is defined by T (s, a).

The inelastic and elastic network slices requests follow
two Poisson processes Pi and Pe with associated rates of
λi and λe, respectively. When admitted into the system, the
slices occupy the system resources during an exponentially
distributed time of average 1

µi
and 1

µe
. Additionally, they

generate a revenue per time unit for the infrastructure provider
of ρi and ρe. That is, the total revenue r generated by, e.g.,
an elastic request with duration t is tρe.

4. Note that SMDP allows to model systems operating under continuous
time such as ours, where slice requests may arrive at any point in time.
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Fig. 2: Example of system model with the different states.

We define our space state S as follows. A state s ∈ S is a
three-sized tuple (ni, ne, k | ni, ne ∈ A) where ni and ne are
the number of inelastic and elastic slices in the system at a
given decision time t, and k ∈ {i, e, d} is the next event that
triggers a decision process. This can be either a new arrival of
a network slice request for inelastic and elastic slices (k = i
and k = e, respectively), or a departure of a network slice of
any kind that left the system (k = d). In the latter case, ni and
ne represent the number of inelastic and elastic slices in the
system after the departure. Fig. 2 shows how the space state
S relates to the admissibility region A.

The possible actions a ∈ A are the following: A = G,D.
The action G corresponds to admitting the new request of an
elastic or inelastic slice; in this case, the resources associated
with the request are granted to the tenant and the revenue
r = ρi,et is immediately earned by the infrastructure provider.
In contrast, action D corresponds to rejecting the new request;
in this case, there is no immediate reward but the resources
remain free for future requests. Note that upon a departure
(k = d), the system is forced to a fictitious action D that
involves no revenue. Furthermore, we force that upon reaching
a state in the boundary of the admissibility region computed
in the previous section, the only available action is to reject
an incoming request (a = D) as otherwise we would not be
meeting the committed guarantees. Requests that are rejected
are lost forever.

The transition rates between the states identified above are
derived next. Transitions to a new state with k = i and k = e
happen with a rate λi and λe, respectively. Additionally, states
with k = d are reached with a rate niµi + neµe depending
the number of slices already in the system. Thus, the average
time the system stays at state s, T̄ (s, a) is given by

T̄ (s, a) =
1

υ (ni, ne)
, (10)

where ni, and ne are the number of inelastic and elastic slices
in state s and υ (ni, ne) = λi + λe + niµi + neµe.

We define a policy π (S), π (s) ∈ A, as a mapping from
each state s to an action A. Thus, the policy determines
whether, for a given number of elastic and inelastic slices in
the system, we should admit a new request of an elastic or
an inelastic slice upon each arrival. With the above analysis,
given such a policy, we can compute the probability of staying
at each of the possible states. Then, the long-term average

revenue R obtained by the infrastructure provider can be
computed as

R =
∑

ni,ne,k

P (ni, ne, k) (niρi + neρe) , (11)

where ρi and ρe are the price per time unit paid by an inelastic
and an elastic network slice, respectively.

The ultimate goal is to find the policy π (S) that maximizes
the long term average revenue, given the admissibility region
and the network slices requests arrival process. We next devise
the Optimal Policy when the parameters of the arrival process
are known a priori, which provides a benchmark for the best
possible performance. Later on, in Section 6, we design a
learning algorithm that approximates the optimal policy.

5.2 Optimal policy

In order to derive the optimal policy, we build on Value
Iteration [37], which is an iterative approach to find the optimal
policy that maximizes the average revenue of an SMDP-based
system. According to the model provided in the previous
section, our system has the transition probabilities P (s, a, s′)
detailed below.

Let us start with a = D, which corresponds to the action
where an incoming request is rejected. In this case, we have
that when there is an arrival, which happens with a rate λi

and λe for inelastic and elastic requests, respectively, the
request is rejected and the system remains in the same state.
In case of a departure of an elastic or an inelastic slice, which
happens with a rate of neµe or niµi, the number of slices in
the system is reduced by one unit (recall that no decision is
needed when slices leave the system). Formally, for a = D
and s = (ni, ne, i), we have:

P (s, a, s′) =


λi

υ(ni,ne)
, s′ = (ni, ne, i)

λe

υ(ni,ne)
, s′ = (ni, ne, e)

niµi

υ(ni,ne)
, s′ = (ni − 1, ne, d)

neµe

υ(ni,ne)
, s′ = (ni, ne − 1, d)

. (12)

When the chosen action is to accept the request (a = G)
and the last arrival was an inelastic slice (k = i), the transition
probabilities are as follows. In case of an inelastic slice arrival,
which happens with a rate λi, the last arrival remains k = i,
and in case of an elastic arrival it becomes k = e. The number
of inelastic slices increases by one unit in all cases except of an
inelastic departure (rate niµi). In case of an elastic departure
(rate neµe), the number of elastic slices decreases by one.
Formally, for a = G and s = (ni, ne, i), we have:

P (s, a, s′) =


λi

υ(ni+1,ne)
, s′ = (ni + 1, ne, i)

λe

υ(ni+1,ne)
, s′ = (ni + 1, ne, e)

(ni+1)µi

υ(ni+1,ne)
, s′ = (ni, ne, d)

neµe

υ(ni+1,ne)
, s′ = (ni + 1, ne − 1, d)

. (13)

If the accepted slice is elastic (k = e), the system exhibits
a similar behavior to the one described above but increasing
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Algorithm 1 Value Iteration

1) Initialize the vector V (s) = 0, ∀s ∈ S. V (s) represents the
long term expected revenue for being in state s. Initialize the
step number n to 1.

2) Update the expected reward at time n + 1, Vn+1 (s) using
the rule

Vn+1 (s) = max
a∈A

[
R (s, a)

T (s, a)
τ

+
τ

T (s, a)

∑
s′

P
(
s, a, s′

)
Vn

(
s′
)

+

(
1− τ

T (s, a)

)
Vn (s)

]
∀s ∈ S

3) Compute the boundaries

Mn = max
s∈S

(Vn+1 (s)− Vn (s))

mn = min
s∈S

(Vn+1 (s)− Vn (s))

and check the condition

0 ≤ (Mn −mn) ≤ ϵmn

4) If the condition in step 3 is not fulfilled, then repeat from
step 2

by one the number of elastic slices instead. Thus, for a = G,
s = (ni, ne, e), we have:

P (s, a, s′) =


λi

υ(ni,ne+1) , s′ = (ni, ne + 1, i)
λe

υ(ni,ne+1) , s′ = (ni, ne + 1, e)
niµi

υ(ni,ne+1) , s′ = (ni − 1, ne + 1, d)
(ne+1)µe

υ(ni,ne+1) , s′ = (ni, ne, d)

. (14)

A reward is obtained every time the system accepts a new
slice, which leads to

R (s, a) =


0, a = D

tρi a = G, k = i

tρe a = G, k = e

. (15)

Applying the Value Iteration algorithm [37] for SMDP is
not straightforward. The standard algorithm cannot be applied
to a continuous time problem as it does not consider variable
transition times between states. Therefore, in order to apply
Value Iteration to our system, an additional step is needed:
all the transition times need to be normalized to multiples
of a faster, arbitrary, fixed transition time τ [38]. The only
constraint that has to be satisfied by τ is that it has to be faster
than any other transition time in the system, which leads to

τ < minT (s, a) , ∀s ∈ S, ∀a ∈ A. (16)

With the above normalization, the continuous time SMDP
corresponding to the analysis of the previous section becomes
a discrete time Markov Process and a modified Value Iteration
algorithm may be used to devise the best policy π (S) (see
Algorithm 1). The discretized Markov Chain will hence per-
form one transition every τ interval. Some of these transitions
correspond to transitions in continuous time system, while in
the others the system keeps in the same state (we call the latter
fictitious transitions).

!"#$%&'(&)*'+%$,&+*$,)

!"#$%&'(&$()*'+%$,&+*$,)

-).'/%0/)&12&'(&$()*'+%$,&+*$,)

-).'/%0/)&12&'(&)*'+%$,&+*$,)

!"#$++$3$*$%4&

5)6$1(

71*$,4&-)2$()"&5)6$1(

89:9;

8989;

89<9;

89=9;

89>9;

:989; =989; <989;

:9:9; =9:9; <9:9;

=9=9;:9=9;

:9<9;

?(,/)'+$(6

?(
,/
)
'
+$
(
6
&

Fig. 3: Example of optimal policy for elastic and inelastic
slices.

The normalization procedure affects the update rule of
step 2 in Algorithm 1. All the transition probabilities
P (s, a, s′) are scaled by a factor τ

T (s,a′) to enforce that the
system stays in the corresponding state during an average time
T (s, a′). Also, the revenue R (s, a) is scaled by a factor of
T (s, a) to take into account the fact that the reward R (s, a)
corresponds to a period T (s, a) in the continuous system,
while we only remain in a state for a τ duration in the discrete
system. In some cases, transitions in the sampled discrete time
system may not correspond to any transition in the continuous
time one: this is taken into account in the last term of the
equation, i.e., in case of a fictitious transition, we keep in
state Vn (s).

As proven in [30], Algorithm 1 is guaranteed to find the
optimal policy π (S). Such an optimal policy is illustrated in
Fig. 3 for the case where the price of inelastic slice is higher
than that of elastic slice (ρi > ρe). The figure shows those
states for which the corresponding action is to admit the new
request (straight line), and those for which it is to reject it
(dashed lines). It can be observed that while some of the states
with a certain number of elastic slices fall into the admissibility
region, the system is better off rejecting those requests and
waiting for future (more rewarding) requests of inelastic slice.
In contrast, inelastic slice requests are always admitted (within
the admissibility region).

The analysis performed so far has been limited to network
slice requests of size one. In order to extend the analysis to
requests of an arbitrary size, we proceed as follows. We set
the space state to account for the number of slices of each
different class in the system (where each class corresponds
to a traffic type and a given size). Similarly, we compute the
transition probabilities P (s, a, s′) corresponding to arrival and
departures of different classes. With this, we can simply apply
the same procedure as above (over the extended space state)
to obtain the optimal policy.

Following [39], it can be seen that (i) Algorithm 1 converges
to a certain policy, and (ii) the policy to which the algorithm
converges performs arbitrarily close to the optimal policy.
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6 N3AC: A DEEP LEARNING APPROACH

The Value Iteration algorithm described in Section 5.2 pro-
vides the optimal policy for revenue maximization under the
framework described of Section 5.1. While this is very useful
in order to obtain a benchmark for comparison, the algorithm
itself has a very high computational cost, which makes it
impractical for real scenarios. Indeed, as the algorithm has to
update all the V values V (s) , s ∈ S at each step, the running
time grows steeply with the size of the state space, and may
become too high for large scenarios. Moreover, the algorithm
is executed offline, and hence cannot be applied unless all
system parameters are known a priori. In this section, we
present an alternative approach, the Network-slicing Neural
Network Admission Control (N3AC) algorithm, which has a
low computational complexity and can be applied to practical
scenarios.

6.1 Deep Reinforcement Learning
N3AC falls under category of the deep reinforcement learning
(RL). With N3AC, an agent (the InP) interacts with the
environment and takes decisions at a given state, which lead
to a certain reward. These rewards are fed back into the agent,
which “learns” from the environment and the past decisions
using a learning function F . This learning function serves to
estimate the expected reward (in our case, the revenue).

RL algorithms rely on an underlying Markovian system
such as the one described in Section 5. They provide the
following features: (i) high scalability, as they learn online on
an event basis while exploring the system and thus avoid a long
learning initial phase, (ii) the ability to adapt to the underlying
system without requiring any a priori knowledge, as they
learn by interacting with the system, and (iii) the flexibility
to accommodate different learning functions F , which provide
the mapping from the input state to the expected reward when
taking a specific action.

The main distinguishing factor between different kinds of
RL algorithms is the structure of the learning function F .
Techniques such as Q-Learning [40] employ a lookup table for
F , which limits their applicability due to the lack of scalability
to a large space state [41]. In particular, Q-Learning solutions
need to store and update the expected reward value (i.e., the Q-
value) for each state-action pair. As a result, learning the right
action for every state becomes infeasible when the space state
grows, since this requires experiencing many times the same
state-action pair before having a reliable estimation of the Q-
value. This leads to extremely long convergence times that are
unsuitable for most practical applications. Additionally, storing
and efficiently visiting the large number of states poses strong
requirements on the memory and computational footprint of
the algorithm as the state space grows. For the specific case
studied in this paper, the number of states in our model
increases exponentially with the number of network slicing
classes. Hence, when the number of network slicing classes
grows, the computational resources required rapidly become
excessive.

A common technique to avoid the problems described above
for Q-learning is to generalize the experience learned from

some states by applying this knowledge to other similar states,
which involves introducing a different F function. The key
idea behind such generalization is to exploit the knowledge
obtained from a fraction of the space state to derive the right
action for other states with similar features. There are different
generalization strategies that can be applied to RL algorithms.
The most straightforward technique is the linear function
approximation [42]. With this technique, each state is given
as a linear combination of functions that are representative of
the system features. These functions are then updated using
standard regression techniques. While this approach is scalable
and computationally efficient, the right selection of the feature
functions is a very hard problem. In our scenario, the Q-values
associated to states with similar features (e.g., the number
of inelastic users) are increasingly non linear as the system
becomes larger. As a result, linearization does not provide a
good performance in our case.

Neural Networks (NNs) are a more powerful and flexible
tool for generalization. NNs consist of simple, highly inter-
connected elements called neurons that learn the statistical
structure of the inputs if correctly trained. With this tool, the
design of neuron internals and the interconnection between
neurons are the most important design parameters. RL al-
gorithms that employ NNs are called Deep RL algorithms:
N3AC belongs to this family. One of the key features of such
a NN-based approach is that it only requires storing a very
limited number of variables, corresponding to the weights and
biases that compose the network architecture; yet, it is able
to accurately estimate the F function for a very large number
of state/action pairs. In the rest of this Section, we review the
NNs design principles (Section 6.2) and explain how these
principles are applied to a practical learning algorithm for our
system (Section 6.3).

6.2 Neural networks framework
The fundamental building blocks of DRL algorithms are the
following ones [43]:

• A set of labeled data (i.e., system inputs for which
the corresponding outputs are known) which is used to
train the NN (i.e., teach the network to approximate the
features of the system).

• A loss function that measures the neural network perfor-
mance in terms of training error (i.e., the error made when
approximating the known output with the given input).

• An optimization procedure that reduces the loss functions
at each iterations, making the NN eventually converge.

There are many different Machine Learning (ML) schemes
that make use of NNs, which are usually categorized as
supervised, unsupervised and RL. A ML system is supervised
or unsupervised depending on whether the labeled data is
available or not, and it is a RL system when it interacts with the
environment receiving feedback from its experiences. N3AC
falls under the latter category, and, within RL, it falls under
the category of deep RL. Since the seminal work in [16], deep
RL techniques have gained momentum and are nowadays one
of the most popular approaches for RL. In spite of the bulk
of literature available for such techniques, devising the N3AC
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Fig. 4: Neural networks internals.

algorithm involves a number of design decisions to address
the specificities of our problem, which are summarized in the
following.

Neuron internal configuration. An exemplary NN is illus-
trated in Figure 4, where we have multiple layers of inter-
connected neurons organized as: (i) an input, (ii) an output
and (iii) one or more hidden layers. A neuron is a non-linear
element that executes a so-called activation function to the
linear combination of the weighted inputs. Many different
activation functions are available in the literature spanning
from a linear function to more complex ones such as tanh,
sigmoid or the Rectified Linear Unit (ReLU) [44].N3AC
employs the latter.

Neural Network Structure. One of the design choices that
needs to be taken when devising a NN approach is the
the way neurons are interconnected among them. The most
common setup is feed-forward, where the neurons of a layer
are fully interconnected with the ones of the next. There
are also other configurations, such as the convolutional or
the recurrent (where the output is used as input in the next
iteration). However, the best choice for a system like the one
studied in this paper is the feed-forward. Indeed, convolutional
networks are usually employed for image recognition, while
recurrent are useful when the system input and the output have
a certain degree of mutual relation. None of these match our
system, which is memoryless as it is based on a Markovian
approach. Furthermore, our NN design relies on a single
hidden layer. Such a design choice is driven by the following
two observations: (i) it has been proven that is possible to
approximate any function using NN with a single hidden
layer [45], and (ii) while a larger number of hidden layers
may improve the accuracy of the NN, it also involves a
higher complexity and longer training period; as a result, one
should employ the required number of hidden layers but avoid
building a larger network than strictly necessary.

Back-propagation algorithm selection. In classical ML ap-
plications, the NN is trained using a labeled dataset: the NN
is fed with the inputs and the difference among the estimated
output and the label is evaluated with the error function.
Then, the error is processed to adjust the NN weights and
thus reduce the error in the next iteration. N3AC adjusts

weights using a Gradient Descent approach: the measured
error at the output layer is back-propagated to the input layer
changing the weights values of each layer accordingly [44].
More specifically, N3AC employs the RMSprop [46] Gradient
Descent algorithm.
Integration with the RL framework. One of the critical
requirements for N3AC is to operate without any previously
known output, but rather interacting with the environment to
learn its characteristics. Indeed, in N3AC we do not have any
“ground truth” and thus we need to rely on estimations of the
output, which will become more accurate as we keep exploring
the system. While this problem has been extensively studied
in the literature [43], [47], we need to devise a solution that is
suitable for the specific problem addressed. In N3AC, we take
as the output of the NN the average revenues expected at a
given state when taking a specific decision. Once the decision
is taken, the system transitions to the new state and we measure
the average revenue resulting from the decision taken (0 in
case of a rejection and ρt in case of an acceptance). Then, the
error between the estimated revenue and the measured one
is used to train the NN, back-propagating this error into the
weights. N3AC uses two different NNs: one to estimate the
revenue for each state when the selected action is to accept the
incoming request, and another one when we reject the request.
Upon receiving a request, N3AC polls the two NNs and selects
the action with the highest expected revenue; then, after the
transition to the new state is performed, the selected NN is
trained. More details about the N3AC operation are provided
in the next section.
Exploration vs exploitation trade-off. N3AC drives the
selection of the best action to be taken at each time step.
While choosing the action that maximizes the revenue at each
step contributes to maximizing the overall revenue (referred
to as exploitation step), in order to learn we also need to visit
new (still unknown) states even if this may eventually lead to
a suboptimal revenue (referred to as exploration step). This
procedure is especially important during the initial interaction
of the system, where estimates are very inaccurate. In N3AC,
the trade-off between exploitation and exploration is regulated
by the γ parameter, which indicates the probability of taking
an exploration step. In the setup used in this paper, we take
γ = 0.1. Once the NNs are fully trained, the system goes into
exploitation only, completely omitting the exploration part.

6.3 Algorithm description

In the following, we describe the proposed N3AC algorithm.
This algorithm builds on the Neural Networks framework
described above, exploiting RL to train the algorithm without a
ground truth sequence. The algorithm consists of the following
high level steps (see Algorithm 2 for the pseudocode):

• Step 1, acceptance decision: In order to decide whether
to accept or reject an incoming request, we look at the
expected average revenues resulting from accepting and
rejecting a request in the two NNs, which we refer to
as the Q-values. Specifically, we define Q (s, a) as the
expected cumulative reward when starting from a certain
state s with action a, compared to a baseline σ given by
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the optimal policy reward when starting from state 0, i.e.,

Q (s, a) = E

 lim
t→∞

D(t)∑
n=0

Rn − σt|s0 = s, a0 = a

 (17)

where D(t) is the number of requests received in a period
t, Rn is the revenue obtained with the nth request and
σ = E[limt→∞

1
t

∑D(t)
n=0 Rn|s0 = 0] under the optimal

policy. Then, we take the decision that yields the highest
Q-value. This procedure is used for elastic slices only, as
inelastic slices shall always be accepted as long as there is
sufficient room. When there is no room for an additional
slice, requests are rejected automatically, regardless of
their type.

• Step 2, evaluation: By taking a decision in Step 1, the
system experiences a transition from state s at step n, to
state s′ at step n+1. Once in step n+1, the algorithm has
observed both the reward obtained during the transition
R (s, a) and a sample tn of the transition time. The
algorithm trains the weights of the corresponding NN
based on the error between the expected reward of s
estimated at step n and the target value. This step relies
on two cornerstone procedures:
– Step 2a, back-propagation: This procedure drives the

weights update by propagating the error measured back
through all the NN layers, and updating the weights
according to their gradient. The convergence time is
driven by a learning rate parameter that is used in the
weight updates.

– Step 2b, target creation: This procedure is needed to
measure the accuracy of the NNs estimations during
the learning phase. At each iteration our algorithm
computes the observed revenue as follows:

ω = R (s, a, s′)− σtn +max
a′

Q (s′, a′) , (18)

where R (s, a, s′) is the revenue obtained in the transi-
tion to the new state. As we do not have labeled data,
we use ω to estimate the error, by taking the difference
between ω and the previous estimate Qn+1 (s, a) and
using it to train the NN. When the NN eventually
converges, ω will be close to the Q-values estimates.

• Step 3, penalization: When a state in the boundary of the
admissibility region is reached, the system is forced to
reject the request. This should be avoided as it may force
the system to reject potentially high rewarding slices. To
avoid such cases, N3AC introduces a penalty on the Q-
values every time the system reaches the border of the
admissibility region. With this approach, if the system is
brought to the boundary through a sequence of highly
rewarding actions, the penalty will have small effect
as the Q-values will remain high even after applying
the penalty. Instead, if the system reaches the boundary
following a chain of poorly rewarding actions, the impact
on the involved Q-values will be much higher, making it
unlikely that the same sequence of decisions is chosen in
the future.

Algorithm 2 N3AC algorithm.

1) Initialize the Neural Network’s weights to random values.
2) An event is characterized by: s, a, s′, r, t (the starting state,

the action taken, the landing state, the obtained reward and
the transition time).

3) Estimate Q (s′, a′) for each action a′ available in state s′

through the NN.
4) Build the target value with the new sample observation as

follows:

target = R
(
s, a, s′

)
− σtn +max

a′
Q
(
s′, a′) (19)

where tn is the transition time between two subsequent states
s and s′ after action a.

5) Train the NNs through RMSprop algorithm:
5.1 If s ̸∈ admissibility region boundary, train the NN with

the error given by the difference between the above target
value (step 4) and the measured one.

5.2 Otherwise, train the NN corresponding to accepted re-
quests by applying a “penalty” and train the NN corre-
sponding to rejected requests as in step 5.1.

• Step 4, learning finalization: Once the learning phase is
over, the NN training stops. At this point, at a given
state we just take the the action that provides the highest
expected reward.

We remark that the learning phase of our algorithm does not
require specific training datasets. Instead, the algorithm learns
from the real slice requests on the fly, during the real operation
of the system; this is the so-called exploration phase. The
training corresponding to such an exploration phase terminates
when the algorithm has converged to a good learning status,
and is triggered again when the system detects changes in the
system that require new training.

7 PERFORMANCE EVALUATION

In this section we evaluate the performance of N3AC via
simulation. Unless otherwise stated, we consider a scenario
with four slice classes, two for elastic traffic and two for
inelastic. Service times follow an exponential distribution with
µ = 5 for all network slices classes, and arrivals follow a
Poisson process with average rates equal to λi = 2µ and
λe = 10λi for the elastic and inelastic classes, respectively.
We consider two network slice sizes, equal to C/10 and C/20,
where C is the total network capacity. Similarly, we set the
throughput required guarantees for elastic and inelastic traffic
to Ri = Re = Cb/10. Two key parameters that will be
employed throughout the performance evaluation are ρe and
ρi, the average revenue per time unit generated by elastic
and inelastic slices, respectively (in particular, performance
depends on the ratio between them). The rest of the network
setup (including the users’ mobility model) is based on the
scenario described in Section 4.2.

Following the N3AC algorithm proposed in the previous
section, we employ two feed-forward NNs, one for accepted
requests and another one for rejected. Each neuron applies
a ReLU activation function, and we train them during the
exploration phase using the NNs RMSprop algorithm imple-
mentation available in Keras (https://keras.io/); the learning
parameter of the RMSprop Gradient Descent algorithm [46] is
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Fig. 5: Revenue vs. ρi/ρe.

equal to 0.001. The number of input nodes in the NN is equal
to the size of the space state (i.e., the number of considered
classes plus one for the next request k), the number of neurons
in the hidden layer equal to 40 for the scenario described in
Sections 7.3 and 7.4 and 20 for the others, and the output layer
is composed of one neuron, applying a linear function. Note
that, while we are dealing with a specific NN structure, one of
the key highlights of our results is that the adopted structure
works well for a wide range of different 5G networks.

In the results given in this section, when relevant we
provide the 99% confidence intervals over an average of 100
experiments (note that in many cases the confidence intervals
are so small that they cannot be appreciated).

7.1 Algorithm Optimality
We first evaluate the performance of the N3AC algorithm
(which includes a hidden layer of 20 neurons) by comparing it
against: (i) the benchmark provided by the optimal algorithm,
(ii) the Q-learning algorithm proposed in [30], and (iii) two
naive policies that always admit elastic traffic requests and
always reject them, respectively. In order to evaluate the
optimal algorithm and the Q-learning one, which suffers from
scalability limitations, we consider a relatively small scenario.
Figure 5 shows the relative average reward obtained by each of
these policies, taking as baseline the policy that always admit
all network slice requests (which is the most straightforward
algorithm).

We observe that N3AC performs very closely to the Q-
learning and optimal policies, which validates the proposed
algorithm in terms of optimality. We further observe that the
revenue improvements over the naive policies is very substan-
tial, up to 100% in some cases. As expected, for small ρi/ρe
the policy that always admits all requests is optimal: in this
case both elastic and inelastic slices provide the same revenue.
In contrast, for very large ρi/ρe ratios the performance of the
“always reject” policy improves, as in this case the revenue
obtained from elastic traffic is (comparatively) much smaller.

7.2 Learning time and adaptability
One of the key advantages of the N3AC algorithm as compared
with Q-learning is that it requires a much shorter learning time.
This is due to the fact that with N3AC the knowledge acquired

Fig. 6: Learning time for N3AC and Q-learning.

Fig. 7: Performance under changing conditions.

at each step is used to update the Q-values of all states, while
Q-learning just updates the Q-value of the lookup table for
the state being visited. To evaluate the gain provided by the
NNs in terms of convergence time, we analyze the evolution
of the expected revenue over time for the N3AC and the Q-
learning algorithms. The results are shown in Figure 6 as a
function of the number of iterations. We observe that after
few hundred iterations, N3AC has already learned the correct
policy and the revenue stabilizes. In contrast, Q-learning needs
several thousands of iterations to converge. We conclude that
N3AC can be applied to much more dynamic scenarios as it
can adapt to changing environments. Instead, Q-learning just
works for relatively static scenarios, which limits its practical
applicability. Furthermore, Q-learning cannot scale to large
scenarios, as the learning time (and memory requirements)
would grow unacceptably for such scenarios.

When the network conditions change, e.g., the arrival pat-
tern of slice requests, this is detected by the system, and
a new training period is triggered. To evaluate the system
performance under such conditions, Figure 7 illustrates the
behavior of N3AC and Q-learning. In this experiment, the
arrival rate of elastic network slices is reduced to one half at a
given point in time, and this is detected as the revenue drops
beyond a given threshold (which we set to 10%). We observe
that N3AC rapidly moves to the best point of operation, while
Q-learning needs much more time to converge, leading to a
substantially lower revenue. We further observe that, even in
the transients, N3AC obtains a fairly good performance.
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Fig. 8: Revenue vs. ρi/ρe.

7.3 Large-scale scenario
The previous results have been obtained for a relatively
small scenario where the evaluation of the optimal and Q-
learning algorithm was feasible. In this section, we assess
the performance of the N3AC algorithm in a large-scale
scenario; indeed, one of the design goals of this algorithm
is its scalability to large scenarios. We consider a scenario
with eight slice classes, four for elastic traffic and four for
inelastic. For each traffic type, we allow four network slice
sizes, linearly distributed among C/10 and C/20. We have
the same throughput guarantees for elastic and inelastic traffic
as in the previous experiment (Ri = Re = Cb/10) and thus we
have the same admissibility region (although the space state
is much larger now). We set µ and λ parameters in a way that
the load of the network is similar to the previous experiment.

In this larger scenario, the optimal and Q-learning algo-
rithms are not feasible. Hence, we evaluate the performance
of N3AC and compare it against the naive policies only.
Figure 8 shows the relative average reward obtained by each
of these policies, taking as baseline the policy that always
admits all network slice requests. Similarly to the evaluation
performed in the previous experiment, we observe that the
N3AC algorithm always substantially outperforms the naive
policies. As expected, for small ρi/ρe the policy that always
admits all requests is optimal, while for very large ρi/ρe ratios
the performance of “always reject” policy improves since the
revenue obtained from the elastic traffic is much smaller.

7.4 Gain over random policies
While the result of the previous section shows that the
proposed algorithm provides high gains, it is only compared
against two naive policies and thus does not give an insight on
the real revenue gains that could be achieved over smarter, yet
not optimal policies. To this end, we compare the performance
of the N3AC algorithm against a set of “smart” random
policies which work as follows: (i) inelastic network slices
requests are always accepted, and (ii) the decision of rejecting
an elastic request is chosen randomly upon defining the policy
for each different state. Then, by drawing a high number of
random policies, it is to be expected that some of them provide
good performance.

Figure 9 compares N3AC against the above approach with
1,000 and 10,000 different random policies, respectively. We

note that the improvement achieved with 10,000 random
policies over 1,000 is very small, which shows the the chosen
setting for the random policies approach is appropriate and
provides the best performance that can be achieved with
such an approach. From the figure, we can see that N3AC
provides substantial gains over the best performing random
policy (around 20%). This confirms that a smart heuristic
is not effective in optimizing revenue; indeed, with such a
large space state it is very difficult to calibrate the setting for
the acceptance of elastic slices that maximizes the resulting
revenue. Instead, by using a NN-based approach such as
N3AC, we are capable of accurately capturing such a large
space state within a limited range of parameters and thus drive
acceptance decisions towards very high performance.

7.5 Memory and computational footprint
One of the key aspects of the proposed framework is the
memory footprint, which has a strong impact on scalability.
By using NNs, N3AC does not need to keep track of the
expected reward for each individual state-action Q (s, a), but
it only stores the weights of the NNs. Indeed, NNs capture the
dynamics of the explored system based on a small number of
weights, which are used to estimate the Q-values for all the
states of the system. This contrasts with Q-learning, which
requires to store data for each individual state. As the number
of weights, fixed by the NN layout, is much smaller than the
total number of states, this provides a much higher scalability,
specially when the number of states grows substantially. For
example, the large scale scenario evaluated in Section 7.3 has
an internal space state of around 500 thousand states, which
makes the Q-learning technique unfeasible for such a scenario.
In contrast, N3AC only requires storing state for around 400
parameters, which represents a huge improvement in terms of
scalability.

In addition to memory, the computational footprint also
has a strong impact on scalability. In order to understand the
computational load incurred by N3AC, we measured the time
elapsed in the computation for one iteration. Table gives the
results obtained with a NVIDIA GTX 1080 GPU platform for
different system scenarios in terms of neurons, number of base
stations and number of users. Results show that computational
times are very low, and the differences between the various
scenarios are almost negligible, which further confirms the
ability of N3AC to scale up to very large network scenarios.

Number of Number of Number of Computational
neurons base stations users time (sec)

40 50 500 0.0181
40 100 1000 0.0194
40 250 1000 0.0195

100 250 2500 0.0192
100 500 2500 0.0197
100 500 5000 0.0199

TABLE 1: Computational load for different network scenarios.

7.6 Different traffic types
Our analysis so far has focused on two traffic types: elastic
and inelastic traffic. In this section, we address a different
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Fig. 9: The distribution of the revenues obtained by random smart policies compared to the N3AC algorithm.

Fig. 10: Revenue vs. ρi/ρe.

scenario that includes the traffic types corresponding to the
four service classes defined by 3GPP [48] (hereafter we refer
to them as class 1 to class 4, where class 1 is the one with
most stringent delay requirements). In line with the analysis
of Section 4, for this scenario with 4 different traffic types we
take the admissibility region A∗ given by (i) |T1| ≤ T max

1 ,
(ii) |T1|+ |T2| ≤ T max

2 , (iii) |T1|+ |T2|+ |T3| ≤ T max
3 , and

(iv) |T1|+ |T2|+ |T3|+ |T4| ≤ T max
4 . For this scenario, we run

the same experiment as in Section 7.3, varying the price ratio
ρ among different classes as follows: rk = ρ · rk+1 ∀k, where
rk is the revenue generated by class k. Figure 10 compares the
performance provided by the N3AC algorithm in this scenario
against the one provided by naive policies which only accept
a subset of classes. We can observe that N3AC provides very
high gains when compared to all the naive policies, which
confirms that our approach can be successfully applied to
scenarios with more traffic types, such as, e.g., the 3GPP
service classes.

8 CONCLUSION
Network Slicing will be one of the pillars of future 5G
networks. It is expected that this new paradigm will bring new
players to the business: Infrastructure Providers will sell their
resources to tenants which, in turn, provide a service to their
users. An open problem within this model is how to admit
requests from the tenants, ensuring that the corresponding
SLAs will be satisfied while maximizing the monetization
of the Infrastructure Provider. In this paper we propose a
machine learning approach to address this problem. To this
aim, we first present a model based on SMDP for the decision-
making process and formulate the optimal revenue problem.

Then, building on this model, we design an algorithm based on
Neural Network: the N3AC algorithm. Our evaluation shows
that N3AC (i) performs close to the optimal under a wide
range of configurations, (ii) substantially outperforms naive
approaches as well as smart heuristics, and (iii) only requires a
few hundred of iterations to converge to optimal performance.
Furthermore, N3AC scales to large scenarios and can be used
in practical settings.
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