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ABSTRACT

Network slicing allowsmobile operators to offer, via proper

abstractions, mobile infrastructure resources (radio, network-

ing, computing) to vertical sectors traditionally alien to the

telco industry (e.g., automotive, health, construction). Own-

ing to similar business nature, in this paper we adopt revenue

management models successful in other industries (e.g. air-

lines, hotels, etc.) and so we explore the concept of slice

overbooking to maximize the revenue of mobile operators.

The main contribution of this paper is threefold. First, we

design a hierarchical control plane to manage the orchestra-

tion of end-to-end-slices. Second, we cast the orchestration

problem as a stochastic yield management problem and pro-

pose two algorithms to solve it: an optimal Benders decom-

position method and a suboptimal heuristic that expedites

solutions. Third, we implement an experimental proof-of-

concept and assess our approach both experimentally and

via simulations with topologies from three real operators.

Our results show that slice overbooking can provide up

to 3x revenue gains in many realistic scenarios, as compared

to employing no overbooking schemes. Moreover, our ex-

perimental prototype demonstrates the feasibility of our ap-

proach with readily available software and conventional

mobile equipment.
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1 INTRODUCTION
The hype around software-defined networking (SDN) and

network function virtualization (NFV) is the projection of a

trend towards network softwarization and programmability

that is blending together telecommunication and computing

industries. This combination has a deep impact on the telco

infrastructure that is yielding a transformation from rela-

tively complex monolithic architectures into a flurry of com-

moditized networking, computing and radio resources [7, 17].
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Clearly, the impelling need of mobile operators to aug-

ment their revenue is a strong pull towards said conver-

gence; and, as a result, uncharted sources of monetization

are surfacing in the mobile setting. Namely, the availabil-

ity of cloudified networking, computing, and radio resource

pools can now be offered, via proper abstractions, to vertical

sectors (e.g., automotive, health, construction)—traditionally

alien to the telecommunication industry—as a means to en-

able advanced services such as remote control of industrial

machinery, autonomous driving, augmented/virtual reality

(AR/VR), etc. [10, 42]. An example of this symbiosis is the

momentum that multi-access edge computing (MEC) is gain-

ing to provide services near the edge, a unique commodity

that only mobile operators can offer.

In this context, Network Slicing has appeared as a key solu-

tion to accommodate these emerging business opportunities

in next generations of mobile systems. [16]. The Next Gener-

ation Mobile Networks (NGMN) Alliance defines a network

slice as “a set of network functions, and resources to run these

network functions, forming a complete instantiated logical net-

work to meet certain network characteristics required by the

service instance(s)” (c.f. [31]). Inspired by recent advances on

SDN and NFV, this concept shall provide the required tools to

allocate (virtual) resources to 3
rd
-parties in an isolated, flexi-

ble and guaranteed manner. It thus becomes evident that the

orchestration of resources end-to-end
1
is, albeit challenging,

a requirement in order to provision network slices with (i)
spectrum at radio sites, (ii) transport services in the backhaul
and (iii) computing/storage at distributed computing clouds.

However, the benefits of Network Slicing are compelling.

Network Slicing leads mobile operators towards business

models that, perhaps surprisingly, have a similar nature to

successful yield management strategies popular in areas such

as airline or hotel industries, and promise substantial gains

in the revenue attained to mobile investments. In particular,

in this paper we explore the concept of slice overbooking,

accommodating the common practice in airline services of

intentionally allocatingmore cargo than available capacity to

the allocation of mobile network slices for 3
rd
-party services.

The challenge to adopt an orchestration system based

upon the concept of slice overbooking is threefold: (i) when

1
With the term end-to-end, we refer to all network domains of the mobile

network ecosystem, including network/storage/computing/radio resources.

Domains beyond the ownership of a mobile operator, e.g., Internet service

providers (ISPs), are not considered by our orchestration solution.
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doing overbooking, resource deficit (and thus violations of

system-level agreements) may occur; and so, in order to

maintain the incentives for 3
rd
-parties (users) to join the sys-

tem, a balance between overbooking and potential service

disruption must be taken care of; (ii) we need to untangle

the coupling between resource reservation and slice admis-

sion control decisions, which is further compounded by the

heterogeneous nature of the resources required to build a

slice across the whole system; (iii) we need to make an ap-

propriate use of monitoring information to be able to adapt

to behavioral dynamics of 3
rd
-party services embedded in

network slices. The main contributions of our paper are:

• We design an end-to-end (E2E) orchestration platform

for mobile systems based on a hierarchical control

plane that exploits feedback information from network

slices to make orchestration decisions;

• We formalize our orchestration problem as a yield

management problem that jointly performs admission

control and resource reservation across all domains

of the mobile system and exploits the concept of slice

overbooking. We derive two algorithms: (i) an optimal

approach based on Benders decomposition, and (ii) a
sub-optimal heuristic that expedites decisions;

• We build an experimental proof-of-concept and assess

the performance of our system via experiments and

simulations with topologies from three real operators.

2 SYSTEM DESIGN AND MODEL
We first present the design of our system and a mathe-

matical model that allows us to make orchestration decision.

Our system has decoupled control and data planes. The data

plane is comprised of radio access points, switches/routers,

and cloud computing infrastructure. In the control plane,

we have a hierarchical architecture where local domain con-

trollers are governed by an end-to-end (E2E) orchestrator.

2.1 Data Plane
As depicted in Fig. 1, we consider a system with a ra-

dio access network (RAN) comprised of B := {1, . . . ,B}
base stations (BS), a distributed computing fabric with C :=

{1, . . . ,C} computing units (CUs), and a transport network

connecting BSs and CUs that we model as an undirected

graph where the edges, collected in set E, are network links.

2.1.1 Service model. We allow tenants to deploy their

services, dubbed vertical services (VSs), within a slice of the

system. Such VSs are provided by the tenant in an offline

on-boarding phase, e.g., as virtual machines (VMs). Creating

a slice requires as first task to construct a network service

(NS) with sufficient computing resources allocated to the

VS, connectivity in the transport network, and spectrum

resources in the radio sites. To this aim, we model such
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Figure 1: Data plane

network service as an ETSI NFV NS [26], with a chain of

physical network functions (PNFs, e.g., slices of BSs and

switches), the vertical service (VS) and all virtual network

functions (VNFs) that connect end-users and VS (e.g., GTP

gateways, MME, etc.). This is shown in Fig. 1.

2.1.2 Resources. We assume BSs with RAN sharing or

slicing support (e.g. [12]), an SDN-based transport network

and OpenStack as compute infrastructure manager (although

other cloud managers can be accommodated). Base stations,

network links and computing units are characterized by a

capacity value Cb , Ce and Cc ∈ R+ indicating, respectively,
the maximum amount of radio resources (spectrum chunks),

transport network resources (bits per second) and computing

resources (shares of aggregated CPU pools)
2
that can be

allocated to a service in BS b ∈ B, network link e ∈ E
and CU c ∈ C. To keep our problem tractable, we assume

that the microscopic problem of selecting a server for a VNF

within a CU is handled locally by a cloud orchestrator (e.g.,

Heat),
3
and focus in this paper on the macroscopic problem

of jointly optimizing (i) slice access control, (ii) CU selection,

and (iii) reservation of resources across the system for the

NS. Now, we let pb,c = ⟨e1, e2, · · · ⟩ be a sequence of links

ei ∈ E connecting BS b and a CU c (i.e., a path) and Pb,c
be a set with all possible available paths pb,c . This can be

readily computed offline using, e.g., k-shortest path methods

based on Dijkstra’s algorithm. Each path p ∈ Pb,c is further
characterized with a delay Dp .

2.1.3 Middleboxes. We rely on an overbooking mecha-

nism that adapts the reservation of resources to the actual

(aggregate) demand of each slice (or a prediction of it) as

explained later on. However, we may violate service-level

agreements (SLAs) when making overly optimistic predic-

tions. In these cases (which we strive to minimize), it is im-

portant to avoid perturbations of the transmitter’s behavior.

If we simply delayed or dropped packets, TCP’s transmission

control of end-users would react in an undesirable manner.

Hence, we need a scheme to under-provision resources that

is also transparent to the tenant’s users.

2
To avoid notation clutter, we focus on compute resources only, however it

could be readily extended so as to consider other resources such as storage.

3
We refer the reader for more details on the microscopic issue to [6].
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TCP proxies are nowadays common in many service gate-

ways and load balancers in operational networks to improve

throughput performance, enhance security, perform network

analysis and traffic control [24, 27]. In our system, we exploit

basic TCP proxy functionality in a middlebox as depicted in

Fig. 1. Our proxy creates a TCP overlay network splitting

each connection into two as per Split TCP [25]: the former

between the service of the slice and the middlebox, and the

latter between the middlebox and the end-user(s) of the slice

where we do rate control. If the slice’s (aggregate) load exceeds

the SLA, packets are randomly dropped to adjust the rate to

the SLA. If the load is within the SLA parameters and below

the maximum network capacity reserved for the slice (as

detailed later), the middlebox simply forwards packets trans-

parently. Finally, if the load is within the SLA parameters but

it exceeds the network capacity reserved for the slice, the

middlebox buffers packets to adjust the rate to the reserved

capacity. Buffered packets are immediately acknowledged

back to the service and then transmitted to the final user

upon capacity availability. This avoids that the rate controller

of the transmitter’s TCP implementation reacts to our traffic

control actions when the load is within the tenant’s SLA.

2.2 Control Plane
Our control plane is depicted in Fig. 2. At the top of the

hierarchy, a slice manager interacts with the tenants and is in

charge of designing a proper NS for the slice. In the middle,

the end-to-end orchestrator embeds most of our system’s

intelligence and is in charge of performing access control

and resources reservation activities for the slices all across

the mobile system, and interacts with domain controllers

(RAN, transport, cloud) to deploy the NS, accordingly.

2.2.1 Slice Manager. We consider a time slotted system

whereby time is divided into decision epochs ⟨1, 2, . . . ⟩. Ten-
ants issue network slice requests to the slice manager at any

time within one decision epoch.
4
We then let T (t ) be the set

of tenants requesting a slice in epoch t .

4
We assume it as an adjustable parameter, e.g., based on (off-)peak hours [28]

that may trade off the forecast accuracy and speed of reaction.

Each slice request is characterized byΦτ := {sτ ,∆τ ,Λτ ,Lτ }.
sτ is a function that binds the network load received by ten-

ant τ ’s service and its computing requirements (details later).

∆τ describes the latency tolerance between τ ’s service and
any BS, andΛτ =

{
Λτ ,p | ∀p ∈ Pb,c ,b ∈ B, c ∈ C,Λτ ,p ∈ R+

}
captures the bitrate requested for τ ’s service. Finally, Lτ is the
duration of the slice. Should Φτ be accepted into the system,

it imposes the SLA between the tenant and the operator.

We design our slice manager as a front-end web app where

tenants can introduce their Φτ requests. Internally, we use a

TOSCA template to model the NS as shown in Fig. 1, and send

it down to the E2E orchestrator using a REST interface.

2.2.2 E2E Orchestrator. This is the main building block

of our system. On the one hand, it processes monitoring

data provided by each controller and provides data aggre-

gation functions and forecasting algorithms. On the other

hand, it makes judicious decisions regarding resource reser-

vation and admission control, and interacts with the different

controllers in order to enforce such decisions. From a soft-

ware perspective, we design our own orchestrator in Java
to prove our concept.

5
This is the only entity that maintains

system state information. All the remaining entities (i.e., slice

manager, controllers) are stateless in order to guarantee con-

sistency. As shown in Fig. 2, the main functional sub-blocks

(connected by means of a REST interface) are the following:

Admission Control and Resource Reservation (AC-
RR) Engine At the beginning of each decision epoch t the
AC-RR engine has to (i) decide which slices are accepted

among those requests arrived during the previous decision

interval, (ii) which CU to be used for placing the VNFs of the

service, and (iii) compute resource reservations across all ele-

ments of the system (i.e., make an infrastructure slice) while

pursuing the maximization of the overall revenues obtained by

the tenants. To this aim, we let x (t )τ ,p denote whether tenant τ

is granted access to path p (x (t )τ ,p = 1) or not (x (t )τ ,p = 0); if slice

Φτ is rejected, then
∑
p x
(t )
τ ,p = 0. Let us also define z(t )τ ,p as the

resource reservation, in terms of bitrate, for tenant τ when

using path p, as illustrated in Fig. 3 (top). Importantly, z(t )τ ,p is

not necessarily the amount of transport resources reserved in

pathp (there are transport overheads we need to account for),
but the bitrate associated to the service when using this path.

Based on z(t )τ ,p , however, we derive the reservations of radio,
transport, and compute resources for slice Φτ . For notation

convenience, we vectorize x (t )τ ,p and z(t )τ ,p into x (t ) ∈ {0, 1}S
(t )

and z(t ) ∈ RS
(t )

+ , where S(t ) :=
∑
b ∈B

∑
c ∈C

∑
p∈Pb,c |T

(t ) |.

5
We acknowledge the fact that there exists a plethora of software projects

developing NFV orchestration tools (Tacker, OSM, Cloudify, etc.). We ad-

vertise that none of the tools accommodate our needs in full and thus we

develop our own for the purpose of this paper. As future work, we aim to

integrate our concept within a mainstream orchestration platform.

3
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Figure 3: Resource dynamics and resource provisioning.

In order to make decisions, we formalize our problem as

a stochastic optimization problem (see §3) and devise two

algorithms to solve it (see §4). As a result, the TOSCA NS

descriptors are modified accordingly and passed down to the

different domain controllers through a REST interface that
follows closely the ETSI GS NFV-IFA 005 specification.

Monitoring and Feedback.We further divide the time

window between two decision epochs into κ(t ) := ⟨1, 2, . . . ⟩
monitoring samples. As depicted in Fig. 3 (bottom), the mon-

itoring function collects VS network load samples in se-

quences ⟨λ(θ )τ ,p | θ ∈ κ
(t )⟩ for every epoch t . With a slight

abuse of notation, we let λ(t )τ ,p = max

{
λ(θ )τ ,p | θ ∈ κ

(t )
}
denote

the maximum demand of resources during epoch t . This
value can be computed for past epochs {1, . . . , t − 1} but it

is unknown in the current one. Therefore, we let
ˆλ(t )τ ,p denote

the estimated (predicted) value for epoch t , and 0 < σ̂ (t )τ ,p ≤ 1

denote the level of uncertainty of such prediction, as ex-

plained in the Forecasting engine subblock.

In addition to tenant demand, another source of uncer-

tainty is the wireless channel capacity. Let η(t )τ ,b be a factor

mapping radio spectrum capacity Cb into actual throughput

(Cbη
(t )
τ ,b b/s) for tenant τ and BS b at epoch t . Note that η(t )τ ,b

depends mostly on the average signal quality between users

and BS, which can be monitored with conventional utilities

and then estimated using standard radio models.

We use sFlow to collect transport samples, OpenStack
Ceilometer/Gnocchi to collect computing/storage monitor-

ing data, and a proprietary protocol to gather signal quality

samples from the RAN. Finally, we exploit InfluxDB to store
time-series data and a MySQL database to save additional

control plane information, e.g., current state of each slice.

Forecasting. This block processes the measurements (ob-

servations) performed during previous decision epochs t and
provides the forecasting information to drive the system to-

wards optimal states. In particular, we focus on a specific

class of machine-learning algorithms that learn and predict

the future traffic behaviors
ˆλ(δ )τ ,p for the next N decision in-

tervals, i.e., δ ∈ {t + 1, . . . , t + N }. Exponential smoothing

methods are common to properly handle future resource

provisioning in cloud computing environments. However,

the main drawback of (double) exponential smoothing is

the inability to account for seasonabilities. Hence, our fore-

casting algorithm is based on a three-smoothing function.
6

This accurately applies to our problem as mobile data has

periodicity features [33] that can be exploited to provide

predicted traffic levels with a certain accuracy σ̂ (δ )τ ,p . There-

fore, we rely on the multiplicative version of Holt-winters

(HW) algorithm [38], where the forecasting function fHW is

defined as fHW : R |t−1 | → R |t+δ | | λτ ,p → λ̂τ ,p.
2.2.3 Controllers. As depicted in Fig. 2, our orchestrator

interacts with domain controllers to enforce orchestration

decisions and to retrieve monitoring information. At the

northbound of the Cloud controller, we translate the received

TOSCA descriptor into a Heat template and send it down to a

driver that interfaces with OpenStack Heat and Keystone
for proper instantiation and CPU reservation (using CPU

pinning [21]). Similarly, at the northbound of the Transport

controller we translate the TOSCA descriptor into a series of

OpenFlow instructions that are processed with Floodlight
SDN controller to set up paths between BSs and CUs with

appropriate capacity. Finally, we use the same descriptor file

to configure radio shares of commercial LTE base stations,

wherein each slice is connected to a different mobile core.

3 ADMISSION CONTROL & RESOURCE
RESERVATION (AC-RR) PROBLEM

Maximization of a business’ revenue falls into the cate-

gory of yield management, a mainstream business theory

that studies fare management, access control and resource al-

location [37]. In the airline industry, the problem is to decide,

based on the number of seat reservations, whether to ac-

cept or reject new requests considering that passengers may

cancel, or even be “no-shows”, prior to the flight departure.

Thus, overbooking is performed with associated penalties

determined by a penalty-cost function. Owning to similar

business nature, we cast our slice orchestration problem into

a stochastic yield management optimization problem.

3.1 Design of the objective function
Analogously to the airline example, we exploit the fact

that users rarely consumes all the resources they request [20].

This gives us the opportunity to allocate more tenants than

those presumably allowed by the leftover capacity, and gain

additional revenue from slice multiplexing (overbooking).

Clearly, an overly aggressive strategy may lead to resource

deficit, discouraging potential users to join the system. We

address this by designing a proper penalty-cost function.

6
Of course, we can easily plug in other forecasting methods, e.g., recent

approaches based on neural networks [43].

4
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Consequently, we define

ψ (t ) :=
∑

τ ∈T(t )

∑
p∈Pb,c

∀b ∈B,c ∈C

Expected penalty︷                         ︸︸                         ︷
Kτ Pr

[
z(t )τ ,p < λ

(t )
τ ,p

]
x (t )τ ,p −

Reward︷ ︸︸ ︷
Rτx

(t )
τ ,p

as the expected instantaneous cost in epoch t , and denote

min

x ∈{0,1}S,z ∈RS+

lim

T→∞

1

T

T∑
t=1

ψ (t ) (1)

as our optimization problem, whereRτ is the reward obtained
from accepting slice Φτ (e.g., subscription fee) and Kτ is a

penalty paid to tenant τ if we fail to serve the granted SLA,
7

which happens with probability Pr

[
z(t )τ ,p < λ

(t )
τ ,p

]
. The target

is to asymptotically minimize the aggregate cost or, equally,

maximize the net reward.

A possible approach to solve this problem is to model λτ ,p
as a random variable with known distribution, and estimate

its parameters looking at the realizations. This falls into the

realm of stochastic programming where the aim is to balance

reward maximization (right-hand side of Ψ(t )) with the cost

of a recourse action (left-hand side). However, in practice,

λτ ,p may be characterized by an intractable distribution such

that discretization may lead to overly complex computation.

Hence, we adopt a more practical approach.

First, we assume that the duration of a slice Lτ is relatively
small compared to the system’s time horizon. Therefore, solv-

ing Eq. (1) is equivalent to minimizingψ (t ) at each decision

epoch. This also allows us to drop the superscript (t) to sim-

plify the notation.

Second, we substitute Pr

[
z(t )τ ,p < λ

(t )
τ ,p

]
with the factor

8

ρτ ,p · ξτ ,p where

ρτ ,p :=
Λτ ,p − zτ ,p

Λτ ,p − ˆλτ ,p
, 0 ≤ ρτ ,p ≤ 1,

captures the risk of resource deficit due to an overly aggres-

sive under-provisioning, and

ξτ ,p := σ̂τ ,pLτ , 0 < ξτ ,p ≤ Lτ ,

is a risk scaling factor that accounts for the uncertainty in

our prediction (σ̂τ ,p > 0) and the duration of the slice request

(Lτ > 0). In this way, we can rewrite our problem as:

min

x ∈{0,1}S,z ∈RS+

Ψ :=
∑
τ ∈T

∑
p∈Pb,c

∀b ∈B,c ∈C

Estimated penalty︷            ︸︸            ︷
Kτ ρτ ,pξτ ,pxτ ,p −

Reward︷ ︸︸ ︷
Rτxτ ,p

We next introduce the constraints of our problem.

7
These coefficients Kτ and Rτ shall be designed to balance user incentives

and revenue. We refer the reader to existing literature studying this from

an economic perspective [29].

8
We later impose

ˆλτ ,p ≤ zτ ,p ≤ Λτ ,p , which yields 0 ≤ ρτ ,p ≤ 1.

3.2 Constraints
We first formulate the system capacity constraints as∑

τ ∈T

∑
p∈Pb,c
∀b ∈B

aτ + zτ ,pbτ ≤ Cc , ∀c ∈ C (2)

∑
τ ∈T

∑
p∈Pb,c

∀b ∈B,c ∈C

zτ ,pηe1e ∈p ≤ Ce , ∀e ∈ E (3)

∑
τ ∈T

∑
p∈Pb,c
∀c ∈C

zτ ,pητ ,b ≤ Cb , ∀b ∈ B (4)

describing capacity constraints of CU resources, transport

links, and BSs, respectively. Parameters aτ ,bτ ∈ sτ in Eq. (2),

characterize the linear relationship between network load

arriving at the service of tenant τ and its computing require-

ments.
9 aτ models a baseline consumption associated to, e.g.,

the VS operative system, the mean number of users of the

tenant, etc., and bτ models the amount of computation re-

quired to serve the allocated bitrate. In Eq. (3), we let ηe
model the overhead of the specific transport protocol used

in link e ∈ E (e.g. VLAN/MPLS tags, GTP tunnels, etc.); and

1e ∈p is equal to 1 only if link e belongs to path p. Finally,
in Eq. (4), ητ ,b maps bitrate resources into radio resources,

which can be estimated with readily available radio models.

We also add the following constraints:∑
p∈Pb,c
∀c ∈C

xτ ,p ≤ 1, ∀τ ∈ T ,∀b ∈ B (5)

to prevent multipath connections;
10∑

p1∈Pm,c

xτ ,p1
≤

∑
p2∈Pn,c

xτ ,p2
, ∀m , n ∈ B,∀c ∈ C,∀τ ∈ T (6)

to guarantee that accepted slices are given a slice of all BSs

and that each BS slice belonging to the same system slice Φτ
is connected to the same CU; and the delay constraint∑

p∈Pb,c
∀c ∈C

xτ ,pDp ≤ ∆τ , ∀τ ∈ T ,∀b ∈ B. (7)

Finally, we formulate the constraints that couple the re-

source reservation decisions (z) and the routing/function

placement and access control decisions (x ) as follows:

z ⪯ xΛ (8)

xλ̂ ⪯ z (9)

that yield λ̂ ⪯ z ⪯ Λ, if Φτ is accepted, or z = 0, otherwise.
9
This model is motivated by the strong linear correlation between network

load and storage/compute usage in network services evinced in several

works, e.g. [19], and our own measurements. We assume the model param-

eters are learnt during an offline on-boarding phase.

10
This constraint can be relaxed if a multipath protocol and coordination

across data centers is implemented.

5
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3.3 AC-RR Problem
Consolidating the above, our problem becomes:

Problem 1 (AC-RR Problem).

min

x ∈{0,1}S,z ∈RS+

Ψ(x ,z)

s.t. (2), (3), (4), (5), (6), (7), (8), (9).

We note that Ψ(x ,z) is a quadratic function. Fortunately,
the structure of our problem yields the following conven-

tional linearization technique. Therefore, we first create an

auxiliary variable yτ ,p := zτ ,p · xτ ,p and then rearrange the

terms in Ψ as follows. Ψ(x ,z) = Ψ(x ,y) =∑
τ ∈T

∑
p∈Pb,c

∀b ∈B,c ∈C

(
Λτ ,pξτ ,pKτ

Λτ ,p − ˆλτ ,p
− Rτ

)
xτ ,p −

ξτ ,pKτ

Λτ ,p − ˆλτ ,p
yτ ,p .

Second, we add the following constraints to maintain the

linearized problem equivalent to the original Problem 1:

y ⪯ Λx (10)

y ⪯ z (11)

z + Λx ⪯ y + Λ (12)

Therefore, our AC-RR problem can be formulated as the

following mixed integer linear problem (MILP):

Problem 2 (AC-RR MILP).

min

x ∈{0,1}S,y∈RS+,z ∈R
S
+

Ψ(x ,y)

s.t. (2), (3), (4), (5), (6), (7), (8), (9), (10), (11), (12).

We next establish the complexity of our problem.

Theorem 1. Problem 2 (and so Problem 1) is NP-hard.

Proof. The proof goes by reduction. Consider a restricted

instance of Problem 2 (or Problem 1) with n tenants with

no associated penalty (Kτ = 0, ∀τ ), 1 CU c1 with unlimited

capacity Cc1
→ ∞, 1 BS b1 with capacity Cb1

= B, and a

simple transport network with a direct link e1 connecting c1

and b1 with unlimited capacityCe1
→∞ and no delay. Given

this setting, it is trivial to cast this problem (in polynomial

time) into the well-known knapsack problem [11], which is

NP-hard. Adding multiple BSs and CUs increases the com-

plexity of the problem, making it even harder to solve. This

proves that Problem 2 is NP-Hard. □

3.4 Practical Considerations
Now we discuss a few additional practical details to be

considered in our problem.

First, if tenant τ is accepted in t , we need to ensure that τ
is also accepted in epochs {t + 1, t + 2, . . . , t + Lτ }. This can

be done by adding the following constraint to Problem 2:∑
p∈Pb,c

∀b ∈B,c ∈C

xτ ,p1Ωτ ∈Z>0
= 1,∀τ ∈

{
T (1), . . . ,T (t−1)

}
(13)

where Ωτ is a state variable of sliceΦτ indicating the time the

slice has left till expiration (for all priorly accepted tenants).

However, (13) may render unfeasible settings. Imagine

a scenario where two slices have been accepted in t1 for a
duration equal to L. Now, if the load forecast of any tenant

exceeds the capacity of some resource in t2, t2 < t1 + L, we
would encounter a deficit of resources that represents an

unfeasible setting due to constraint (13). To address this, we

relax the capacity constraints (2)-(4) as follows,∑
τ ∈T

∑
p∈Pb,c
∀b ∈B

aτ + zτ ,pbτ ≤ Cc + δc , ∀c ∈ C (14)

∑
τ ∈T

∑
p∈Pb,c

∀b ∈B,c ∈C

zτ ,pηe1e ∈p ≤ Ce + δb , ∀e ∈ E (15)

∑
τ ∈T

∑
p∈Pb,c
∈C

zτ ,p,iητ ,b ≤ Cb + δr , ∀b ∈ B (16)

and Problem 2 as follows

min

x ∈{0,1}S,y∈RS+,z ∈R
S
+

δr ∈R+,δb ∈R+,δc ∈R+

Ψ(x ,y) +M(δr + δb + δc )

s.t. (14), (15), (16), (5), (6), (7), (8), (9), (10), (11), (12),

where δr ,δb ,δc ∈ R+ are auxiliary variables accounting for

the deficit of radio, transport and computing resources, re-

spectively, andM is a large value accounting for the cost of

leasing these resources (e.g., via federation) or the penalties

that we would have to pay (also sometimes known as “big

M method”). While we consider it in our implementation (as

shown in §5), we omit these details in the following analysis

to keep our presentation simple.

4 ALGORITHMS
We next present two algorithms to solve Problem 2: an

optimal method based on Benders decomposition, designed for

small to medium-scale networks, and a suboptimal heuristic

that expedites solutions in medium to large-scale networks.

4.1 Benders Method
Our first methodology to solve Problem 2 lies on the ob-

servation that constraints (8), (9), (10) and (12) couple the

real-valued resource reservation decision variables (z, y),
and the binary placement and path selection decision vari-

ables (x ). We relax these constraints and decouple the slack

problem into two subproblems by means of Benders decom-

position [9]: one that involves the so-called “complicated”

variables and one that involves only continuous variables.
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We first describe our slave subproblem as follows:

Problem 3 (Slave problem PS (x̄)).

min

y∈RS+,z ∈R
S
+

∑
τ ∈T

∑
p∈Pb,c

∀b ∈B,c ∈C

−
ξτ ,pKτ

Λτ ,p − ˆλτ ,p
yτ ,p

s.t. (2), (3), (4), (11)

z ⪯ x̄Λ (17)

x̄λ̂ ⪯ z (18)

y ⪯ Λx̄ (19)

z + Λx̄ ⪯ y + Λ (20)

which can be solvedwith standard linear programming solvers,

and define its dual problem as PDS (x̄).

Problem 4 (Dual slave problem PDS (x̄)).

max

µ∈RN
+

д (x̄ , µ)

s.t. − bτ µ1,c −
∑
e ∈p

ηeµ2,e − ητ ,pµ3,b − µ4,τ ,p + µ5,τ ,p+

+ µ7,τ ,p − µ8,τ ,p ≤ 0, ∀b ∈ B,∀c ∈ C,∀p ∈ Pb,c ,∀τ ∈ T
− µ6,τ ,p − µ7,τ ,p + µ8,τ ,p ≤ −

ξτ ,pKτ

Λτ ,p − ˆλτ ,p
,

∀b ∈ B,∀c ∈ C,∀p ∈ Pb,c ,∀τ ∈ T
where д (x̄ , µ) =

∑
c ∈C

µ1,c

©«
∑
τ ∈T

∑
p∈Pb,c
∀b ∈B

aτ −Cc

ª®®®¬ −
∑
e ∈E

µ2,eCe −
∑
b ∈B

µ3,bCb+

+
∑
τ ∈T

∑
p∈Pb,c

∀b ∈B,c ∈C

(
− µ4,τ ,p x̄τ ,pΛτ ,p + µ5,τ ,p x̄τ ,p ˆλτ ,p−

− µ6,τ ,pΛτ ,p x̄τ ,p + µ8,τ ,p (Λτ ,p x̄τ ,p − Λτ ,p )

)
and µ is the vector of N = C + |E | + B + 5S dual variables.

We then formulate our master subproblem as follows:

Problem 5 (Master problem PM (C1,C2)).

min

x ∈{0,1}S,θ ∈R+

∑
τ ∈T

∑
p∈Pb,c

∀b ∈B,c ∈C

(
ξτ ,pKτ

Λτ ,p − ˆλτ ,p
Λτ ,p − Rτ ,p

)
xτ ,p + θ

s.t. (5), (6), (7)

д (x , µm) ≤ θ , ∀µm ∈ C1

(21)

д
(
x , µl

)
≤ 0, ∀µl ∈ C2

(22)

where θ is a surrogate variable substituting the “cost” of the

resource reservation decisions, and equations (21) and (22)

Algorithm 1 Benders method

1: k ← 1

2: Initialize C1 = C2 = ∅,UB(1) = −LB(1) >> 1

3: while UB(k ) − LB(k ) > ϵ do
4: LB(k ),x (k ),θ (k ) ← PM(C1,C2)

5: µ(k ) ←DS (x
(k ))

6: if PDS (x
(k )) is unbounded then

7: µl ← extreme ray

8: C2 ← C2 ∪ {µl }
9: else
10: µm ← extreme point

11: C1 ← C1 ∪ {µm }

12:

Γ =
∑
τ ∈T

∑
p∈Pb,c

∀b ∈B,c ∈C

(
ρτ ,pξτ ,pKτ − Rτ ,p

)
x
(k)
τ ,p − д

(
x (k ), µ(k )

)
13: if UB(k−1) > Γ thenUB(k ) = Γ
14: k ← k + 1

correspond to the optimality and feasibility cuts, respectively,

added iteratively by Algorithm 1.We then usethe iterative Al-

gorithm 1 to solve Problem 2. The optimality of this approach

is formalized in the following theorem.

Theorem 2 (Optimality of Algorithm 1). Algorithm

1 converges to the optimal solution of Problem 2 in a finite

number of iterations.

Proof. The proof follows from the Partition Theorem in

[9]. Let us consider the abstract formulation of Problem (5):

min

x ,θ
cT

1
x + θ s.t. (x ,θ ) ∈ G , (23)

where G is the set of constraints, created by the intersection

of the constraints in X and the convex hull of the extreme

halflines resulting from the dual slave problem (which is a

polyhedral cone C). Algorithm 1 is initialized with empty

sets C1 and C2 and thus G(1) corresponds to a minimal set of

constraints. At each iteration k > 1, the algorithm appends

a point of the dual slave problem into set C1 or C2, which

results in the addition of one extreme halfline of the cone

C in G(k ). As a result, set G is iteratively reconstructed and,

given that there is a finite number of them, convergence to

the optimal solution is guaranteed because, in the worst case,

the algorithm will reconstruct the full set G. □

4.2 Heuristic Algorithm
While the Benders method provides an optimal solution,

it might take long time to converge and solve the problem.

To boil down the complexity of the above-mentioned prob-

lem, here we propose a heuristic that easily solves Problem 5

by means of the well-known Knapsack problem formula-

tion [30]. In the following, we cast Problem 5 onto a classical

multi-constrained 0-1 Knapsack problem model

7
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Problem 6 (Multi-constrained Knapsack Problem).

min

x ∈{0,1}S

∑
τ ∈T

∑
p∈Pb,c

∀b ∈B,c ∈C

γτ ,p xτ ,p

s.t.

∑
τ ∈T

∑
p∈Pb,c

∀b ∈B,c ∈C

w (k )τ ,p xτ ,p ≤W
(k ), ∀k (24)

∑
j ∈T

∑
p∈Pb,c

∀b ∈B,c ∈C

1j=τ x j,p ≤ 1, ∀τ ∈ T ; (25)

where γτ ,p andw (k )τ ,p in constraint (24) are the cost and the

weight of item xτ ,p , respectively, whereasW
(K )

is the total

capacity of the knapsack. They are defined as follows.

γτ ,p =

(
ξτ ,pKτ

Λτ ,p − ˆλτ ,p
Λτ ,p − Rτ ,p

)
(26)

w (k )τ ,p =−µ4,τ ,pΛτ ,p+µ5,τ ,p ˆλτ ,p−µ6,τ ,pΛτ ,p+µ8,τ ,pΛτ ,p (27)

W (k ) = −
∑
c ∈C

µ1,c

©«
∑
τ ∈T

∑
p∈Pb,c
∀b ∈B

aτ −Cc

ª®®®¬ +
∑
e ∈E

µ2,eCe+

+
∑
b ∈B

µ3,bCb +
∑
τ ∈T

∑
p∈Pb,c
∀b ∈B

µ8,τ ,pΛτ ,p . (28)

Note that constraints are dynamically added when Problem 4

is solved at each iteration k ≥ 1. The constraint set (25)

accounts for constraint (5) in Problem 5.

When devising a lightweight solution to solve the above-

mentioned problem, we rely on classical heuristics proposed

for knapsack problems. We name our proposal Knapsack

Admission Control (KAC) algorithm and we show the details

in Algorithm 2. First, we combine together different weights

w (k )τ ,p into one single value per item xτ ,p and we calculate the

overall system capacityW as follows

wτ ,p =
∑
k

ϵkw
(k )
τ ,p , and W =

∑
k

ϵkW
(k ), (29)

where ϵk is recursively defined as follows

ϵk =

��������ϵk−1W
(k ) −

∑
τ ∈T

∑
p∈Pb,c
∀b ∈B

ϵk−1w
(k )
τ ,p

�������� , ∀k > 0, (30)

assuming that ϵ0 = 1. This translates the problem into a

classical 0-1 Knapsack problem with one single capacity con-

straint. Thus, we compute the ratio ϕτ ,p =
γτ ,p
wτ ,p

per item xτ ,p .

Based on such ratio, we sort all the items in a decreasing

order and we try to fit them into our system capacityW , fol-

lowing the classical first-fit decreasing (FFD) algorithm [22].

Algorithm 2 Knapsack Admission Control (KAC)

1: Initialize H = 0,C = {e} where {e} = {τ ,p},∀τ ,p
2: for j ∈ {1,k} do
3: Calculate ϵj based on (30)

4: Calculatewτ ,p andW based on (29)

5: H =W
6: for e ∈ C do
7: ϕτ ,p =

γτ ,p
wτ ,p

8: Sort C based on ϕτ ,p in a decreasing order

9: while (H > 0 ∧ |C| > 0) do
10: Pool the first e ← C
11: if H −wτ ,p ≥ 0 then
12: xτ ,p = 1

13: H = H −wτ ,p

4.3 Simulation Results
We now evaluate, with emulated data planes from real op-

erators, the revenue gains achievable by our approach under

different slice types, traffic patterns and penalties/rewards.

4.3.1 Infrastructure. We consider real urban networks

from 3 different operators in Romania (N1), Switzerland (N2)

and Italy (N3), shown in Fig. 4(a)-(c). First, we observe that

they do not have canonical structure. Some BSs are as far as

20Km from the edge CU (in N3), while others are within

0.1Km range. There is therefore high path diversity across

networks. N1 has high path redundancy (mean of 6.6 paths),

while in N3 several BSs have only 1 path (mean 1.6). As a re-

sult, the delay
11
distribution differs across networks. Second,

they use heterogeneous link technologies. N3 uses mainly

fiber, N2 wireless and N1 fiber, copper and wireless. This in-

duces high diverse link capacities (from 2 to 200 Gb/s). This

diversity, illustrated in Fig. 4(d)-(e), evinces that a one-size-

fits-all orchestration policy may be arbitrarily inefficient.

Romania (N1) and Switzerland (N2) have N = 198 and

N = 197 BSs, respectively. We consider Cb = 20 MHz for all

BSs b that, assuming ideal channel conditions and 2x2 MIMO,

yield ηb = 20/150.
12
Conversely, Italy (N3) has 1497 radio

units clustered in 200 groups of 5-10 radio units. We consider

each cluster as one BS with capacity equal to the aggregate

capacity of the cluster (betweenCb = 80 andCb = 100 MHz).

Finally, we connect the edge CU (green dot in Fig. 4(a)-(c))

with a core CU (not shown in the figure) with a link with

unlimited bandwidth and a latency equal to 20 ms. We let

the edge CU have a capacity equal to 20N CPU cores, i.e.,

enough capacity to accommodate one mMTC tenant (the

more compute-hungry, as we show later) at maximum load,

and the core CU have five times as much. Moreover, to ease

presentation, we neglect transport overheads and so ηe = 1.

11
Assuming store-and-forward and 12000/Ce , 4 or 5µs/Km (cable or wire-

less), and 5µs for transmission, propagation, and processing delay.

12
We consider ideal conditions to ease the analysis. In practice, however,

radio models can be used to make a more accurate estimation.
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(a) Romanian topology (N1). (b) Swiss topology (N2). (c) Italian topology (N3).
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Figure 4: (a)-(c): Networks from 3 European operators: red dots indicate the BSs’ locations, black dots the routers/switches, and
the green dot an edge CU (placed at the most central position). (d)-(e) Path capacity and delay distribution for the 3 networks.

Slice type R ∆ (ms) Λ (Mb/s) σ (Mb/s) s = {a, b } (CPUs)
eMBB 1 30 50 variable {0, 0}

mMTC (1 + b) 30 10 0 {0, 2}

uRLLC (2 + b) 5 25 variable {0, 0.2}

Table 1: End-to-end network slice template

4.3.2 Scenarios. We consider 3 heterogeneous slice types

to account for diverse delay/throughput requirements. The

reward R gained when accepting a tenant, shown in Table 1,

differs across slice types to reflect such heterogeneity.

Slice requests Φτ are generated with a fixed Λτ = {Λτ ,p =

Λ | ∀p ∈ Pb,c ,∀b ∈ B,∀c ∈ C equal to Λ shown in Table 1

for all BSs. Then, the actual traffic demand λ(θ )τ follows a

Gaussian distribution with variable mean
¯λ and standard

deviation σ . The only exception is the mMTC template that

has a deterministic load (i.e., σmMTC = 0). Finally, the service

compute model parametrization s is also shown in the table.

We compare both our solutions (Benders and KAC) against

a baseline approachwherein overbooking is not implemented.

For the latter, we solve the same AC-RR problem but we re-

place constraint (9) with xΛ ⪯ z. As a result, accepted slices

upon the “no overbooking” policy are allocated with the

amount of resources agreed in their SLA. Importantly, we

use our optimal Benders method to solve the “no overbook-

ing” problem, which yields an upper-bound benchmark.

All slice requests are issued at the beginning of each sim-

ulation, which runs until the mean achieved revenue has a

standard error lower than 2%. This is almost immediate for

“no overbooking” but it requires longer for our overbooking

methods due to the time needed to learn slice load patterns.

We present results for a variable setting of mean load
¯λ,

load variability σ , and penalty value Kτ = K , ∀τ . In our

results, depicted in Fig. 5 and 6, different colors represent

different penalty values such that K = m
Λ R, where m =

{1, 4, 16}. In this way, ifm = 1, failing to serve 10% of the

SLA would incur in a penalty equal to 10% of the reward

payed by the tenant (40% ifm = 4 and so on). Finally, we set

σ = {0, ¯λ/4, ¯λ/2} with different line types (for Benders) or

shapes (for KAC). We consider a total number of 10 tenants

for Romanian and Swiss topology and 75 tenants for the

Italian topology (with more radio and transport capacity). In

this way, our simulations span not only realistic topologies

but also a wide set of conditions and parameters.

4.3.3 Homogeneous scenarios. In our first set of simula-

tions, all the slices use the same template and have equal (but

independent) traffic demand statistics (
¯λ and σ ). Fig. 5 depicts

the relative net revenue gain (percentage) obtained with our

approaches against “no overbooking” for three slice types

(eMBB, mMTC and uRLLC) and three topologies described

above. In the x-axis, we use parameter 0 ≤ α ≤ 1 to control

the mean load of each slice such that
¯λ = αΛ (e.g., if α = 1

the mean load of Φτ is equal to Λτ ).

We note that both KAC and Benders method provide iden-

tical performance when all slices are eMBB, regardless the

considered topology. This is remarkable because Benders

may take a few hours to converge in some of the settings and

topologies used in our study whereas KAC boils down this

number to a few seconds (computational time is not shown

due to space constraints). In case of mMTC and uRLLC slices,

KAC under-performs when compared to Benders, though it

still provides between 200% and 75% additional revenue w.r.t.

“no overbooking” in low to medium load regimes. However,

as above-mentioned, we use an optimal method to imple-

ment “no overbooking” and it thus suffers from convergence

times similar to our optimal method.

Let us focus on the eMBB/Romanian case (top left plot of

Fig. 5). In this setting, “no overbooking” obtains a revenue

equal to 3 monetary units irrespective of the conditions of

the system (not shown due to space limitations). Regarding

our approaches, we obtain up to 220% additional revenue (i.e.,

up to 10 monetary units) when the mean load is low (relative

to the SLA). This is quite intuitive because the lower the ratio

betweenmean load
¯λ andΛ, the larger the multiplexing gains

and so do the overbooking gains. The second observation

worth to mention is that, when σ = 0 (no traffic variability),

our approach obtains the same revenue gains independently

from the penalty factor imposed. This results in overbooking

with no risk as the forecasting process is performedwith high

certainty. The third due observation is that higher slice load

variability leads to less revenue gains. The rationale behind is

that higher variability incurs in a higher risk of committing

an SLA violation and so our mechanism overbooks more

conservatively. Finally, when σ > 0, higher penalty factors

also negatively affect the potential revenue gains due to a

conservative behavior.
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Figure 5: Relative revenue gained (percentage) of our ap-
proach (red, blue, green) over “no overbooking” (black) in
homogeneous scenarios. Variable mean load ¯λ.

The net revenue attained to mMTC or uRLLC are higher

(up to 30 and 25 units in Romanian, respectively) due to their

higher reward. However, we can observe that the relative

gains remain very similar for all slice types in Romanian.

This is not the case for Swiss, where the maximum gain of

eMBB is twice its gain in Romanian (and twice the gain for

mMTC and uRLLC). The reason is that the transport of Swiss

is constrained by low-capacity wireless links whereas the

computing capacity (used by uRLLC and specially mMTC)

remains the same. As a result, “no overbooking” obtains less

net revenue when there are eMBB slices only w.r.t. Roma-

nian. However, our approaches are capable of accepting more

eMBB tenants when their actual load is limited.

Last, the Italian topology has considerably more radio and

transport resources than both Romania and Swiss, whereas

the computing capacity remains the same. Indeed, “no over-

booking” obtains up to 25 monetary units when all slices

are eMBB (8x more than the same scenario in Swiss and

Romanian), and very similar net revenue when slices are

mMTC and uRLLC (because they mostly depend on comput-

ing, which keeps constant across topologies). Given that we

have 75 tenants (instead of 10), the relative obtained gains

when applying overbooking are similar for eMBB as in the

other topologies. This is due to the fact that increasing radio

and transport capacity benefits both “no overbooking” and

our approaches, similarly. However, these gains are substan-

tially higher when the mean load of the slices is mild to low

with mMTC and uRLLC as computing is severely constrained

thereby substantially helping in these load regimes.
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Figure 6: Revenue achieved by our approach ((red, blue,
green)) and “no overbooking” (black) in heterogeneous sce-
narios. Mean load is ¯λ = 0.2Λ.
4.3.4 Heterogeneous scenarios. We now consider mixed

setups. To simplify the visualization of our results, we focus

on scenarios that merge eMBB and mMTC slices, URLLC and

eMBB slices, and mMTC and uRLLC slices, respectively, and

fix the mean load
¯λτ = 0.2 ·Λτ . Fig. 6 depicts the net revenue

of our approaches and “no overbooking” (with a black line)

for the same range of σ and penalty parameters used before.

The scenarios have a fix number of slices (10 for Romanian

and Swiss, 75 for Italian) and we vary the percentage of one

type of slice w.r.t. the other (with parameter β).

First, let us study the top left plot where we have 10
β

100

mMTC slices and 10
100−β

100
eMBB slices in Romanian. The

revenue attained to “no overbooking” grows as we increase

the ratio of mMTC tenants until β = 25% onwards when

the revenue remains flat. At that point, “no overbooking” is

not capable of accommodating computing resources to the

increasing number of mMTC slices but there are sufficient

eMBB slices to compensate. This occurs until β = 75 where

there are not enough eMBB tenants and therefore the rev-

enue falls as computing resources are fully consumed. In

marked contrast, our approach obtains a linearly increasing

revenue as we increase the number of mMTC slices that

are all eventually accepted. Interestingly, the larger relative

gains over “no overbooking” occurs when the scenario is

more homogeneous (β = 0% and β = 100%). Similar obser-

vations can be obtained from the other two mixes of slice

types. We obtain similar revenues also for the Swiss topology.

The main difference is that, given the constrained transport,

higher values of σ and higher penalty factors incur in lower

revenues compared to the Romanian topology.
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Compared to Romanian and Swiss, similar revenue trends

are observed for “no overbooking” but substantially different

for our approaches in Italian topology taking the first case

(eMBB and mMTC slices). The revenue of both Benders and

KAC rapidly grows as we accept more mMTC slices while

declining after we reach β = 25%. Counter-intuitively, while

Italian has substantially more radio and transport resources

(and more slice requests) than the other two topologies, the

computing resources are essentially the same, and there are

not sufficient eMBB slices to compensate the rejected mMTC

slices from β = 25% onwards. Similar observations can be

made for Italian in the other two mixes of slices.

5 EXPERIMENTAL PROOF-OF-CONCEPT
We evaluate our orchestrator

13
with a real data plane. To

this aim, we deploy the experimental testbed depicted in

Fig. 7. The hardware components are summarized in Table 2.

Device type Description Ref.

vEPCs OpenEPC Rel. 7 (1x per slice) [4]

UEs Samsung Galaxy 7 (1x per slice and BS) [5]

Transport OpenFlow 1.5 switch with 48 1-gigabit ports [3]

RAN 2x 20 MHz NEC small cell with RAN sharing @ band 3 [2]

CU OpenStack Queens with 16 (Edge) and 64 (Core) CPUs [1]

Table 2: Detailed HW components in our testbed

In the RAN, we use 2 commercial BSs with RAN sharing

support and we use different PLMN-Ids [39] to identify slices

due to the lack of 5G network slicing-support equipment. The

proprietary interface of the BSs allows us to grant shares of

bandwidth, physical radio blocks (PRBs) specifically, to differ-

ent mobile networks (associated with a different PLMN-id).
14

The BSs are set in 20-MHz channels (capacity equal to 100

PRBs). In the transport, we use a programmable OpenFlow
switch to virtualize the backhaul topology shown in Fig. 1,

comprised of 1-Gb/s Ethernet links. For computing, we con-

nect two conventional servers with two 1Gb/s Ethernet links,

respectively. The first server has 16 CPU cores and emulate

an edge CU; the second has 64 CPU cores and we use netem
to emulate 30 ms latency in its backhaul link, emulating a

core CU. To construct each slice’s network service (see Fig. 1),

we create a VM instance of OpenEPC to connect the slice to

the mobile system, a VM with our rate-control middlebox

and an additional VM with mgen to generate traffic with cus-

tom traffic patterns, emulating the VS of the slice. Finally, we

use one Android smartphone per slice and BS, connected to

the BS with coaxial cables for isolation, to emulate a crowd

of UEs receiving traffic from each VS.

We set up a dynamic scenario where slice requests arrive

every 2 epochs for a total of 18 epochs (i.e., up to 9 slices). We

13
The algorithm implementation has been carried out using the framework

of IBM ILOG CPLEX and its Python API.
14
We use commercial BSs for convenience; however, our approach is a

natural fit to open source initiatives such as [12].

Figure 7: Testbed

take one monitoring sample every 5 minutes (which is con-

ventional [28]), and collect 12 samples per epoch (i.e., 1 hour).

The first three slice requests “uRLLC1”, “uRLLC2”, “uRLLC3”

are uRLLC (with the parameters described in Table 1), the

next three “mMTC1”, “mMTC2”, “mMTC3” are mMTC and

the remaining slices “eMBB1”, “eMBB2”, “eMBB3” are eMBB.

To ease the analysis, we fix the mean load of each slice to be

half its Λ (SLA) with a standard deviation equal to 10% of its

mean, and a penalty equal to K = R
Λ (m = 1 in Fig. 5 and 6).

We repeat the experiment with our approach (using Benders)

and with “no overbooking”. The results are summarized in

Fig. 8(a)-(d). Fig. 8(a) shows the net revenue per BS of both

approaches over time. The remaining Fig. 8(c)-(d) show, with

stacked areas, both the utilization and the actual reservation

made on each domain of the system. For the transport, we

selected the two links that connect each CU to the rest of the

system to guarantee that any possible path is represented.

The first 3 slice requests (URLLC) arrive at 6h, 8h and 10h,

respectively, requesting an aggregate of 10 CPUs each in the

edge CU. While “no overbooking” accepts only “uRLLC1”,

our mechanism adapts the CPU reservation to the actual

load of the slices and it thus accepts also “uRLLC2” as shown

by Fig. 8(d). This results in twice the revenue we obtain at

10h. The next 3 slice requests are mMTC requesting up to 40

CPUs. Similarly, our approach adapts the CPU reservation

to the actual load and allows us to accept an additional slice

over “no overbooking”, which results in 100% revenue gain

at 16h. From this time on, one eMBB slice request arrives

every 2h requesting 50 Mb/s service SLA. This forces “no

overbooking” to accept only 2 slices at the moment, since

some radio resources are already used by uRLLC and mMTC

tenants. Conversely, our approach allows us to squeeze one

extra eMBB slice, leading at an extra 86% revenue after 22h.
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Figure 8: Net revenue over time (a); and resource reservation and actual utilization across BSs (b), two transport links (c) and
both CUs (d), respectively, for 9 heterogeneous slice requests arriving at different times.

6 RELATEDWORK
As a result of the 5G hype, network slicing has recently

gained much attention. However, most of the literature fo-

cuses on domain-specific issues that leave a significant gap

in the design of practical mechanisms for the end-to-end

orchestration of network slices. In addition, most research

focuses either on analytical work with considerable system

assumptions or, conversely, on the design of an orchestration

system that neglects formal analysis of optimization models.

In our work, we design an end-to-end orchestration system

that is feasible in practice and relies on well-grounded opti-

mization methods to make yield-driven decisions, as shown

in our simulation and experimental assessments.

The authors of [36] presented an admission control broker-

ing scheme specific for the RAN, while in [12] an experimen-

tal prototype of a slice-capable LTE stack was introduced.

The authors of [32] designed and analyzed a radio resource

allocation algorithm achieving fairness and isolation among

different slices. All these works show that substantial mul-

tiplexing gains can be attained by designing a proper radio

resources slicing solution.

The key-feature to support network slicing is customiza-

tion of mobile system resources. With this in mind, different

studies analyze the slicing of transport and cloud resources.

The Virtual Network Embedding (VNE) [15, 45] and Virtual

Network Function (VNF) placement problems [8, 14, 44] have

become very popular in the last few years. In [34], the au-

thors integrate two well-known NP-hard problems to model

the VNF placement problem: a facility location problem and

a generalized assignment problem. Later, this framework was

extended with real-time constraints [40]. In [41], an approxi-

mate Markov-decision-process-based algorithm is designed,

and a first approximation algorithm to solve the VNF place-

ment problem is presented in [35]. The works of [8, 14] focus

on the orchestration of service function chains in cloud plat-

forms via linear programming (LP) relaxation and a heuristic,

respectively. In [23], the joint problem of deploying chains

of virtual functions and path computation in a distributed

cloud is studied. A similar problem is addressed by [18] and

[6], where the joint VNF placement problem and routing

problem is considered. These works allow the deployment

of multiple instances of the same service chain in case of

several traffic flows generated by many distributed nodes.

Finally, the authors of [13] propose a service model where

data-center slices are dynamically created over commodity

hardware. Then, on top of each slice, an on-demand virtual-

ized infrastructure manager (VIM) is instantiated to control

the allocated resources.

To summarize, despite the attention that network slicing

has received upon the wave of 5G, the design of an orchestra-

tion solution that spans across multiple domains of a mobile

network and the design of business models that take advan-

tage of it, remain as open challenges. Our work is, to the best

of our knowledge, the first attempt to fill this gap.

7 CONCLUSIONS
In this paper, we have presented a novel yield-driven or-

chestration platform that explores the concept of slice over-

booking. Notably, our solution is specifically designed for

the orchestration of slices end-to-end, across multiple het-

erogeneous domains of the mobile ecosystem. To this aim,

our design is based on a hierarchical control plane that gov-

erns multiple domain controllers across a mobile system and

uses ETSI-compliant interfaces and data models. Our system

embeds a control engine in charge of making (i) admission

control and (ii) resource reservation decisions by exploiting

monitoring and forecasting information. Our overbooking

mechanism is grounded on an optimization formulation pro-

viding provably-performing algorithms that achieve up to 3x
revenue gains in several realistic scenarios built upon data

from three real mobile operators. Finally, we have presented

an experimental proof-of-concept that validates the feasibil-

ity of implementing our approach with conventional mobile

equipment on top of available open-source software.
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